赞
踩
ECANet(Efficient Channel Attention Network)是一种新颖的注意力机制,用于深度神经网络中的特征提取,它可以有效地减少模型参数量和计算量,提高模型的性能。
ECANet注意力机制是针对通道维度的注意力加权机制。它的基本思想是,通过学习通道之间的相关性,自适应地调整通道的权重,以提高网络的性能。ECANet通过两个步骤实现通道注意力加权: 1.提取通道特征 2.计算通道权重
用pytorch实现ECANet注意力机制:
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- class ECANet(nn.Module):
- def __init__(self, in_channels, r=8):
- super(ECANet, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.fc1 = nn.Linear(in_channels, in_channels // r, bias=False)
- self.relu = nn.ReLU(inplace=True)
- self.fc2 = nn.Linear(in_channels // r, in_channels, bias=False)
- self.sigmoid = nn.Sigmoid()
-
- def forward(self, x):
- b, c, _, _ = x.size()
- y = self.avg_pool(x).view(b, c)
- y = self.fc1(y)
- y = self.relu(y)
- y = self.fc2(y)
- y = self.sigmoid(y).view(b, c, 1, 1)
- return x * y

nn.AdaptiveAvgPool2d(1)
用于将输入的特征图转换为1x1大小的特征图,以进行全局平均池化。nn.Linear(in_channels, in_channels // r, bias=False)
是线性层,将输入通道数降低到输入通道数的r分之一,其中r是一个超参数。nn.ReLU(inplace=True)
是激活函数,将线性层的输出通过非线性变换。nn.Linear(in_channels // r, in_channels, bias=False)
是另一个线性层,将通道数恢复到原始数量。nn.Sigmoid()
是一个非线性函数,将输出值限制在0到1之间。将ECANet注意力机制添加到神经网络中:
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
- self.ecanet1 = ECANet(64)
- self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
- self.ecanet2 = ECANet(128)
- self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
- self.ecanet3 = ECANet(256)
- self.fc1 = nn.Linear(256 * 8 * 8, 512)
- self.fc2 = nn.Linear(512, 10)
-
- def forward(self, x):
- x = F.relu(self.conv1(x))
- x = self.ecanet1(x)
- x = F.max_pool2d(x, 2)
- x = F.relu(self.conv2(x))
- x = self.ecanet2(x)
- x = F.max_pool2d(x, 2)
- x = F.relu(self.conv3(x))
- x = self.ecanet3(x)
- x = F.max_pool2d(x, 2)
- x = x.view(-1, 256 * 8 * 8)
- x = F.relu(self.fc1(x))
- x = self.fc2(x)
- return x

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。