当前位置:   article > 正文

python+离散小波变换+不同系数的波形_librosa 小波

librosa 小波
  1. import librosa.display
  2. from pywt import wavedec
  3. wav, sr_ret = librosa.load('E:\PycharmProjects\pythonProject\AudioClassification-Pytorch-master\dataset/audio/fold1/1_001.wav',sr=48000,duration=0.1)
  4. coeffs = wavedec(wav, 'db1', level=3)
  5. cA3, cD3, cD2, cD1 = coeffs
  6. print(coeffs)
  7. print(cA3.shape[0])
  8. print(cD3.shape[0])
  9. print(cD2.shape[0])
  10. print(cD1.shape[0])

输出

  1. [array([0.07650445, 0.0833558 , 0.08176605, 0.07457277, 0.08058269,
  2. 0.08559845, 0.08848084, 0.08152057, 0.07507973, 0.07418638,
  3. 0.07222807, 0.0802957 , 0.07812794, 0.08086747, 0.0813316 ,
  4. 0.08133803, 0.08903894, 0.08096947, 0.08364467, 0.0858161 ,
  5. 0.08263485, 0.0826166 , 0.084121 , 0.07839198, 0.07731027,
  6. 0.07829413, 0.08144377, 0.08425384, 0.07708076, 0.07302544,
  7. 0.08425157, 0.07876903, 0.07965968, 0.08055855, 0.07688117,
  8. 0.07561374, 0.0776955 , 0.08211555, 0.08077055, 0.07747985,
  9. 0.08099629, 0.08394986, 0.08020782, 0.08058906, 0.07841584,
  10. 0.07157657, 0.07174112, 0.07586262, 0.07597165, 0.08309121,
  11. 0.08112757, 0.08367857, 0.08113486, 0.08471542, 0.08022445,
  12. 0.08143417, 0.08199209, 0.08208886, 0.08421066, 0.07655222,
  13. 0.08022839, 0.08060424, 0.08251352, 0.07767326, 0.07826051,
  14. 0.07334705, 0.07912773, 0.08224639, 0.0790364 , 0.0837498 ,
  15. 0.08024669, 0.08002347, 0.08170317, 0.08433206, 0.08640218,
  16. 0.07982307, 0.08440088, 0.08177947, 0.08317496, 0.08085726,
  17. 0.07737669, 0.07184465, 0.07059529, 0.0732912 , 0.06881827,
  18. 0.07532898, 0.07772851, 0.07787324, 0.08319858, 0.08242418,
  19. 0.08302195, 0.08178334, 0.08113691, 0.08074863, 0.08416497,
  20. 0.07770953, 0.07553872, 0.07905459, 0.07795161, 0.07548623,
  21. 0.0763735 , 0.07832793, 0.07339811, 0.07720153, 0.07559691,
  22. 0.08141415, 0.07731315, 0.07560685, 0.0770729 , 0.0861042 ,
  23. 0.08410327, 0.08318184, 0.08247956, 0.07819069, 0.07677838,
  24. 0.08221659, 0.07896061, 0.07779658, 0.08053669, 0.07588732,
  25. 0.07578352, 0.0819625 , 0.08047445, 0.08371016, 0.07993497,
  26. 0.0777813 , 0.07721636, 0.07812442, 0.08051974, 0.07607076,
  27. 0.07781185, 0.08463093, 0.08159737, 0.07877699, 0.07496189,
  28. 0.06888194, 0.07555442, 0.07751273, 0.07661042, 0.07716994,
  29. 0.08133742, 0.08101633, 0.08267595, 0.08143541, 0.0802163 ,
  30. 0.08083557, 0.08178051, 0.08527566, 0.08280802, 0.08180082,
  31. 0.07648174, 0.07510398, 0.07431263, 0.08128905, 0.078614 ,
  32. 0.07557225, 0.07472385, 0.07460151, 0.07624479, 0.0736261 ,
  33. 0.07955411, 0.07606583, 0.07844146, 0.07553253, 0.08258235,
  34. 0.08214785, 0.07790203, 0.07635618, 0.07609379, 0.07641994,
  35. 0.07296453, 0.07609296, 0.07738647, 0.08275433, 0.0767623 ,
  36. 0.07813157, 0.08094644, 0.08080099, 0.07682419, 0.07998861,
  37. 0.08367382, 0.08261096, 0.08205467, 0.08700588, 0.08106048,
  38. 0.0808828 , 0.08543463, 0.08100224, 0.07617016, 0.07438301,
  39. 0.07415715, 0.07884923, 0.0825543 , 0.08242591, 0.07399297,
  40. 0.07007709, 0.07432111, 0.07870231, 0.07951258, 0.07747823,
  41. 0.08302285, 0.08279146, 0.08541548, 0.08217598, 0.08232942,
  42. 0.08017525, 0.08079593, 0.07484783, 0.08008471, 0.07704122,
  43. 0.07626027, 0.07872074, 0.07958986, 0.07663406, 0.0798322 ,
  44. 0.08069367, 0.08166939, 0.08113493, 0.07984167, 0.08142896,
  45. 0.08042534, 0.07943277, 0.07597353, 0.07827045, 0.07882155,
  46. 0.07894538, 0.0762165 , 0.07470343, 0.07209414, 0.07398853,
  47. 0.07060766, 0.07167587, 0.07709406, 0.07368625, 0.0808139 ,
  48. 0.0848256 , 0.08148388, 0.08378291, 0.0797573 , 0.07830805,
  49. 0.07792932, 0.08128259, 0.07737546, 0.07406706, 0.07683124,
  50. 0.07726574, 0.08051058, 0.08012202, 0.07937583, 0.08373319,
  51. 0.08405182, 0.07577369, 0.07758511, 0.07770786, 0.07784066,
  52. 0.0797521 , 0.08077393, 0.0782212 , 0.07821926, 0.07224753,
  53. 0.06847429, 0.07510112, 0.07935793, 0.08226496, 0.07713239,
  54. 0.07336913, 0.07453088, 0.07342835, 0.07915321, 0.0802083 ,
  55. 0.0816238 , 0.07868612, 0.07658873, 0.08129548, 0.08166315,
  56. 0.08399409, 0.08193853, 0.07621405, 0.07322274, 0.07028052,
  57. 0.074819 , 0.07636015, 0.0801906 , 0.08288169, 0.08052365,
  58. 0.07812575, 0.0856584 , 0.07943095, 0.0794 , 0.07932052,
  59. 0.07406253, 0.0778361 , 0.07833064, 0.08100557, 0.07808447,
  60. 0.0744974 , 0.07699095, 0.07259583, 0.07173784, 0.07229984,
  61. 0.0718141 , 0.06842783, 0.06690203, 0.07124069, 0.0795822 ,
  62. 0.08091439, 0.08040856, 0.08044728, 0.07821813, 0.08208902,
  63. 0.08179837, 0.08729526, 0.07951806, 0.08333924, 0.08210346,
  64. 0.07523954, 0.06967054, 0.07918971, 0.07891127, 0.07904792,
  65. 0.07572553, 0.07884577, 0.0766885 , 0.07705434, 0.07961883,
  66. 0.07868335, 0.07378662, 0.07194845, 0.07541746, 0.07771003,
  67. 0.07751166, 0.07527715, 0.07342698, 0.07163695, 0.071534 ,
  68. 0.07507175, 0.07910451, 0.07556672, 0.07271922, 0.07255846,
  69. 0.08069247, 0.07876556, 0.07662736, 0.07938129, 0.07697265,
  70. 0.08694211, 0.08396698, 0.09010324, 0.08705542, 0.07861633,
  71. 0.08135987, 0.07236537, 0.07304978, 0.07165784, 0.07340549,
  72. 0.07421646, 0.0767194 , 0.07675241, 0.08252157, 0.07675698,
  73. 0.07544861, 0.07693213, 0.07308666, 0.07410522, 0.07863477,
  74. 0.07989947, 0.07596504, 0.07679385, 0.07979421, 0.07945854,
  75. 0.07921755, 0.07787776, 0.07914457, 0.07341358, 0.07890388,
  76. 0.07645927, 0.07982715, 0.0849042 , 0.08140737, 0.07883157,
  77. 0.07596848, 0.07129404, 0.07976403, 0.08318871, 0.0806198 ,
  78. 0.08112253, 0.07455175, 0.07499638, 0.07198498, 0.07723052,
  79. 0.07590163, 0.07928336, 0.07509609, 0.07649867, 0.07738686,
  80. 0.07865521, 0.07855918, 0.07433577, 0.07542983, 0.07663357,
  81. 0.0790327 , 0.07832916, 0.07704087, 0.07545093, 0.07496922,
  82. 0.07543322, 0.07862443, 0.08919193, 0.08848961, 0.08113268,
  83. 0.07875451, 0.07927984, 0.07846828, 0.07718647, 0.07466707,
  84. 0.07620907, 0.07991058, 0.0766169 , 0.07648637, 0.0787633 ,
  85. 0.08306654, 0.08246756, 0.07767807, 0.07173108, 0.06498012,
  86. 0.0659945 , 0.07103009, 0.07433408, 0.06990716, 0.07043816,
  87. 0.07639977, 0.07681788, 0.08032517, 0.0806926 , 0.07744077,
  88. 0.07543324, 0.07485405, 0.0773479 , 0.07661782, 0.08448278,
  89. 0.08356978, 0.07769548, 0.07541443, 0.07788131, 0.08322986,
  90. 0.07844289, 0.07219986, 0.0693067 , 0.0746428 , 0.08027782,
  91. 0.08220445, 0.08147219, 0.0801007 , 0.08104272, 0.08053236,
  92. 0.07884105, 0.07810962, 0.07880224, 0.07743876, 0.07805119,
  93. 0.07639103, 0.0650245 , 0.06958014, 0.07624692, 0.07561584,
  94. 0.07910293, 0.08245309, 0.07515989, 0.07711318, 0.08244964,
  95. 0.08498955, 0.08151393, 0.07814609, 0.07573043, 0.07292885,
  96. 0.08006284, 0.0818428 , 0.07845806, 0.07777024, 0.0764415 ,
  97. 0.07770479, 0.08139426, 0.07999376, 0.08103448, 0.07086097,
  98. 0.06726958, 0.07467616, 0.07264686, 0.07965501, 0.07358599,
  99. 0.06837974, 0.07032041, 0.0776692 , 0.07809793, 0.08055476,
  100. 0.07907535, 0.07928792, 0.07733329, 0.07562521, 0.07707467,
  101. 0.07762201, 0.0792919 , 0.07773963, 0.07735741, 0.07583827,
  102. 0.07782334, 0.07556397, 0.07850955, 0.07773505, 0.07798739,
  103. 0.07732989, 0.07960375, 0.08103994, 0.08319928, 0.07735961,
  104. 0.07601283, 0.07901438, 0.07949287, 0.07512777, 0.08112602,
  105. 0.07945028, 0.07675199, 0.07388671, 0.07714041, 0.08099532,
  106. 0.07333526, 0.07033597, 0.06997744, 0.0792564 , 0.0786798 ,
  107. 0.08057447, 0.08080969, 0.07959443, 0.07612674, 0.07113966,
  108. 0.06680212, 0.07484698, 0.08247542, 0.08138932, 0.08040316,
  109. 0.07361268, 0.07313529, 0.07641388, 0.08491105, 0.07951498,
  110. 0.07505268, 0.06946716, 0.07413299, 0.07489438, 0.07581851,
  111. 0.07453717, 0.07234445, 0.07685083, 0.08001874, 0.08391744,
  112. 0.08334988, 0.0786819 , 0.07295582, 0.07549617, 0.08413371,
  113. 0.08416696, 0.07808357, 0.07391369, 0.06973092, 0.07802516,
  114. 0.09084705, 0.08113551, 0.07766015, 0.07585586, 0.0703136 ,
  115. 0.07314977, 0.07097851, 0.07535447, 0.0806351 , 0.07829477,
  116. 0.07916272, 0.07912883, 0.07459378, 0.07150758, 0.07923067,
  117. 0.07881656, 0.07970369, 0.08004165, 0.07624418, 0.08114168,
  118. 0.07801101, 0.073632 , 0.07607837, 0.07412928, 0.07651855,
  119. 0.08344139, 0.07755301, 0.07544194, 0.07679245, 0.07610674,
  120. 0.0775127 , 0.07700332, 0.07513452, 0.06917572, 0.0684009 ],
  121. dtype=float32), array([-9.19412822e-04, -2.77705491e-04, 1.82990357e-03, -5.28894365e-04,
  122. -2.32549757e-03, -2.76560336e-03, 2.87637115e-03, 3.35941091e-03,
  123. -1.68948621e-03, 9.10822302e-04, -1.40679255e-03, -1.54112652e-03,
  124. 1.80123746e-03, -1.62048638e-03, -8.34085047e-04, -1.13041326e-03,
  125. 4.87755984e-04, 2.64811888e-03, -2.82973051e-04, 6.12594187e-04,
  126. -4.99051064e-04, 9.62205231e-05, 2.06321478e-04, -1.11363828e-03,
  127. 2.31694430e-03, -1.38759241e-03, -2.08251923e-03, 3.62410396e-03,
  128. 4.18052077e-05, -8.79757106e-04, -4.35471535e-04, 5.41329384e-04,
  129. -2.53003836e-03, 2.02051923e-03, 2.68366188e-04, -1.16672739e-03,
  130. -2.71604210e-03, 7.51275569e-04, 1.93547457e-04, -5.85615635e-04,
  131. 1.38495117e-04, 5.32601029e-04, 6.93351030e-05, 4.87066805e-04,
  132. 1.77503750e-03, 8.67754221e-04, -1.52819976e-03, -1.05461478e-03,
  133. -1.13817677e-03, 3.61729413e-04, -3.43192369e-04, -1.88506022e-03,
  134. 5.49564138e-03, 2.39383429e-03, -2.26896256e-04, -2.39400566e-03,
  135. -4.40545380e-04, -1.78169087e-03, 2.43815407e-03, -1.97758526e-03,
  136. 4.53829393e-03, -1.89631060e-03, -1.74862146e-03, 3.09866667e-03,
  137. -3.60884145e-03, 1.11461058e-03, -3.22386622e-03, 2.42048129e-03,
  138. -6.98234886e-04, -6.80014491e-05, 1.27427280e-03, 2.45563686e-04,
  139. -3.03193927e-03, -2.92445347e-03, 2.44621560e-03, -4.02562320e-04,
  140. 5.98300248e-04, 1.94914639e-03, -2.08131969e-04, 1.49377808e-03,
  141. 1.35994330e-03, -7.37547874e-04, 1.07578561e-03, -6.48178160e-04,
  142. 4.29563224e-05, -6.27275556e-04, 4.11543995e-04, -1.61727518e-03,
  143. 6.54727221e-04, 2.40700319e-03, -9.14633274e-04, -2.44547054e-03,
  144. -1.60250068e-03, 4.98227775e-04, -3.20073217e-03, 2.57544219e-03,
  145. -1.66125596e-04, -3.55400145e-04, -1.47880986e-03, 1.24289095e-03,
  146. -3.16505507e-03, 9.60439444e-04, 1.36749446e-03, 3.29215080e-04,
  147. 1.66431814e-03, -3.96138057e-03, -9.39819962e-04, 9.32801515e-04,
  148. -3.30308452e-03, -1.40149519e-03, 8.71799886e-04, -9.90938395e-04,
  149. 5.11273742e-04, -4.23654914e-04, -1.26186758e-03, 6.15645200e-04,
  150. 1.45183131e-03, -6.13521785e-04, 2.05806270e-03, -1.42905861e-04,
  151. -2.01117247e-03, 9.65200365e-04, -9.55071300e-04, -6.37847930e-04,
  152. -2.80555338e-04, 8.70373100e-04, -4.62234020e-05, 1.23131648e-03,
  153. -4.19579446e-04, 3.37422639e-03, -1.46759674e-03, -5.76160848e-04,
  154. -4.11227345e-04, 7.34705478e-04, 4.29031253e-03, -1.69409811e-03,
  155. 2.28899345e-03, -1.54434890e-03, -1.17590651e-03, 1.65958703e-03,
  156. -3.37271765e-03, 3.43170017e-04, -1.96165219e-03, 2.37503648e-03,
  157. 9.18816775e-04, 8.88284296e-04, -1.35789812e-03, 1.56359375e-03,
  158. -8.77913088e-04, 4.39591706e-04, 2.19020993e-03, -5.34042716e-04,
  159. -1.24017522e-03, 1.27464533e-04, -2.03542411e-04, 3.95033509e-04,
  160. 1.02115795e-03, 1.53642148e-03, -2.33984739e-03, 4.10351902e-04,
  161. -2.75070220e-03, 3.71068716e-04, 7.66932964e-04, 2.77936831e-03,
  162. -8.66670161e-04, 4.46524471e-04, -1.74118206e-03, 2.20124424e-03,
  163. -4.78278846e-04, 1.54823065e-04, -1.76130980e-03, -9.72520560e-04,
  164. 1.40395388e-03, -2.39870325e-03, -7.97580928e-04, -3.62314284e-04,
  165. -3.20842862e-03, 1.85065717e-03, -4.51616943e-04, -9.82768834e-05,
  166. -1.60764903e-04, -6.17340207e-04, 1.49879605e-03, -2.90536135e-03,
  167. 3.17697600e-03, -1.63880736e-03, 6.33463264e-04, 6.92240894e-04,
  168. 1.58064440e-03, 7.91754574e-04, -1.66999549e-03, -1.23303384e-03,
  169. -7.68262893e-04, 3.92008573e-04, 2.48483568e-03, -7.62786716e-04,
  170. -2.44450569e-03, -8.51124525e-04, 9.80395824e-04, 1.52823329e-03,
  171. -7.20478594e-04, -5.97301871e-04, -8.65578651e-04, 7.63747841e-04,
  172. 8.27267766e-04, 1.85035169e-04, 2.11673230e-03, 2.97658145e-04,
  173. 7.15330243e-05, -2.40746886e-03, 2.51512975e-04, 3.31572443e-03,
  174. -3.25339660e-03, 9.23924148e-04, 2.59465724e-03, -5.34877181e-04,
  175. -1.42599270e-03, -1.10276416e-03, -1.92034990e-04, 5.53552061e-04,
  176. -1.29390508e-03, 9.78004187e-04, -8.45298171e-04, 1.95261091e-04,
  177. 5.43896109e-04, -9.32995230e-04, 2.19732523e-04, 2.27139890e-03,
  178. -1.15505233e-03, 1.06808171e-03, 6.33094460e-04, -3.02784145e-03,
  179. 9.99502838e-04, -5.81026077e-04, -2.21816450e-03, 1.73605233e-03,
  180. -2.49064714e-03, -5.19659370e-04, 2.27000192e-03, -2.90558115e-03,
  181. 5.48809767e-04, 4.44758683e-04, 6.72250986e-04, -1.63748860e-04,
  182. -1.94746628e-03, 2.77590007e-04, 2.25482136e-03, -2.32259929e-03,
  183. 6.72016293e-04, 2.99960375e-04, 4.01332974e-04, -2.66224146e-04,
  184. -1.94330513e-03, 4.36436385e-04, 1.64438039e-04, -1.19584054e-03,
  185. 2.42852420e-03, 3.90414149e-04, 4.23725694e-04, 1.23712420e-03,
  186. 3.19629908e-06, -1.89045444e-03, -1.99901313e-03, 5.03677875e-04,
  187. 2.31100991e-03, -1.41481310e-03, 8.34465027e-04, 1.04177743e-04,
  188. -2.15237960e-03, -2.14999169e-03, 8.57561827e-04, -6.55081123e-04,
  189. -2.29173899e-03, 2.07542256e-03, -7.74070621e-04, -1.06385350e-03,
  190. 1.40264630e-03, 4.42564487e-05, 1.82382017e-03, -3.64828855e-04,
  191. -2.22200900e-03, -3.35648656e-06, 8.33291560e-04, -1.55290589e-03,
  192. 2.77876854e-04, -1.39109790e-03, -2.29655579e-03, 1.76150352e-03,
  193. -3.22385505e-03, 2.90875882e-03, 5.02839684e-05, -1.14429742e-04,
  194. -5.31699508e-04, -8.26314092e-04, 2.93190777e-03, -2.11944059e-03,
  195. 1.48001313e-03, -7.52605498e-04, -3.57236713e-04, -5.22516668e-04,
  196. 2.61961669e-03, 3.03197652e-04, -1.64348260e-03, -4.60579991e-04,
  197. -9.09250230e-04, -5.31461090e-04, -1.46765262e-04, 2.12563574e-03,
  198. -5.15879691e-03, 1.95128843e-03, -2.75124237e-03, 1.47037208e-04,
  199. 1.79392099e-03, -1.96666270e-03, 1.08301267e-03, 4.37385961e-03,
  200. -4.82087210e-03, 2.73622572e-04, 3.06653976e-03, -2.21773610e-03,
  201. 1.84828043e-03, 2.64829397e-03, -1.01720542e-03, -2.35607475e-03,
  202. -9.36273485e-04, -7.86982477e-04, 1.83547661e-03, 1.62300467e-03,
  203. -1.14835799e-03, -1.26681849e-03, 1.42568350e-03, -3.46705317e-04,
  204. 2.09825858e-03, -2.44937837e-05, -2.90337205e-03, -1.08496472e-03,
  205. 3.05589288e-04, 1.29439682e-03, -2.16550380e-03, 8.50073993e-05,
  206. -1.33325532e-03, 1.37008354e-03, -1.49320811e-04, -2.12598592e-03,
  207. 4.46293503e-04, -8.99523497e-04, 1.00542605e-03, -1.14213303e-03,
  208. 6.41749799e-03, -2.33733654e-03, 1.65421516e-03, 3.71962786e-04,
  209. -1.46562234e-03, 2.77005881e-03, -8.79745930e-04, -2.85597146e-03,
  210. 1.24006718e-03, 1.71992928e-04, -1.01399422e-03, 2.18090415e-03,
  211. 1.47879124e-04, 4.05319035e-04, 6.32736832e-04, -1.24635920e-03,
  212. -1.49516761e-03, 6.43692911e-04, -3.87147069e-04, -4.15816903e-04,
  213. -4.06179577e-04, 6.77749515e-04, -1.76429749e-04, 3.32884490e-04,
  214. 1.57438964e-03, -1.30302832e-03, -1.12066418e-03, 1.56072900e-03,
  215. -5.28566539e-04, -8.62061977e-04, 4.80669364e-03, 3.91487032e-04,
  216. 1.07408315e-03, 1.80875883e-03, 1.74738467e-04, 1.01762265e-03,
  217. 1.25486404e-04, -6.29387796e-05, -9.78223979e-04, 9.80060548e-04,
  218. -3.28290835e-03, 9.39585268e-04, -2.60937959e-04, 1.47106871e-03,
  219. 1.77498162e-03, -1.85396895e-03, -2.31282413e-03, -3.72719020e-04,
  220. 3.00113112e-04, -1.19842589e-04, -1.36920810e-03, 3.01828235e-03,
  221. -5.10364771e-04, 7.14436173e-04, -4.98756766e-04, 8.36931169e-04,
  222. -5.62749803e-04, 1.91614032e-03, -2.49107555e-03, -1.74377114e-04,
  223. 5.65234572e-04, 6.11599535e-04, -1.15366653e-03, 1.12172216e-04,
  224. 4.09480184e-04, -6.02588058e-04, 2.46616453e-03, -2.29165331e-03,
  225. 4.99863178e-04, 4.32031974e-03, -1.91142410e-03, -6.56396151e-05,
  226. 2.36150622e-03, -1.17996708e-03, 1.95114315e-03, -1.02481991e-03,
  227. 1.15659833e-03, 2.85096467e-05, -2.71784514e-03, -2.13386118e-03,
  228. 1.55009702e-03, -1.11348554e-03, -1.90751627e-03, 7.24643469e-05,
  229. 1.93396583e-03, 6.35944307e-04, -1.65932253e-03, 1.10460445e-03,
  230. -2.13388354e-03, -8.78058374e-04, 1.29975379e-04, -2.18156725e-03,
  231. 2.84444913e-03, -1.26660615e-03, 1.69638544e-03, -3.00370902e-03,
  232. 2.15679407e-04, -4.56951559e-04, 4.16825712e-03, 4.66462225e-04,
  233. -1.35587901e-03, 1.07486174e-03, -8.08518380e-04, -7.95632601e-04,
  234. -1.31630152e-03, 6.81914389e-05, -1.70946494e-03, -2.34656036e-05,
  235. 4.75030392e-04, 9.45765525e-04, 1.60865486e-04, 2.65451893e-03,
  236. 2.58754194e-03, 1.77779421e-03, -5.28949872e-03, -1.13114342e-03,
  237. 1.82129443e-05, -1.29653513e-03, 1.29612908e-03, -5.70680946e-04,
  238. 7.11333007e-04, -2.22627446e-03, -1.54956058e-03, 1.17816031e-04,
  239. 7.45616853e-04, 1.22104958e-03, 9.33341682e-04, -1.66025013e-03,
  240. -6.31917268e-04, 1.69041380e-03, -4.95493412e-04, -6.11189753e-04,
  241. -2.92167068e-03, 1.04411691e-03, 1.22471154e-03, 1.31848827e-03,
  242. -3.94135714e-06, -4.44556400e-03, 1.96090341e-03, -2.16497853e-03,
  243. -1.72711909e-04, 2.95315683e-03, -7.64977187e-04, -3.71760502e-03,
  244. -2.17189267e-03, 7.15553761e-05, 7.80671835e-05, -2.00032070e-03,
  245. -1.39757991e-03, 6.77466393e-04, 9.14301723e-04, -1.25657767e-03,
  246. 4.27499413e-04, 5.51234931e-04, -1.03604048e-03, 1.28062442e-03,
  247. -3.05548310e-05, 8.94702971e-05, 1.29890442e-03, -4.81747091e-04,
  248. 7.56133348e-04, 1.55855343e-03, 1.13686547e-03, -8.55661929e-04,
  249. -2.12424621e-03, 1.23820826e-03, 2.30076164e-03, -1.15603954e-03,
  250. -1.17508695e-03, 8.90180469e-04, -4.82853502e-04, -1.17086247e-03,
  251. -8.97310674e-05, 3.44923884e-03, -4.29982692e-03, -2.05725431e-04,
  252. 1.25605613e-03, 8.70946795e-04, -1.21130794e-03, 2.70979106e-03,
  253. -1.69864669e-03, 6.85799867e-04, -1.38894096e-03, 8.97139311e-04,
  254. -2.37897038e-04, -3.47964466e-04, -7.21972436e-04, -9.57295299e-04,
  255. -4.25600633e-03, -2.40505114e-03, 2.66962871e-03, -2.93772668e-04,
  256. 4.76829708e-04, -4.57264483e-04, -4.27111983e-04, 1.11941621e-03,
  257. 1.53720379e-04, 1.01309642e-03, 9.25563276e-04, -1.85696036e-03,
  258. -1.09097734e-03, -1.42387301e-03, 3.71515751e-04, -8.83851200e-04,
  259. -4.77556139e-04, 8.95302743e-04, -2.02618167e-03, 1.42284110e-03,
  260. 4.69524413e-04, -5.60089946e-04, -1.09597668e-03, 6.04119152e-04,
  261. 7.17248768e-04, -2.52187252e-04, 2.07419321e-03, -1.79142505e-03,
  262. -5.71248308e-03, 7.69369304e-04, 1.91691145e-03, 4.37930226e-04,
  263. -1.33608282e-03, 4.70664352e-04, 8.32937658e-04, -4.21281904e-04,
  264. -3.07039544e-03, -1.38933212e-03, 2.07934156e-03, 1.01882592e-03,
  265. -1.72524154e-03, 3.21514904e-03, -1.14127994e-03, -2.61555612e-03,
  266. 2.39065289e-03, 2.31847167e-04, 2.17926130e-03, 2.10806727e-04,
  267. 9.18816775e-04, 7.57198781e-04, -2.36980245e-03, 3.42942774e-04,
  268. -1.04760006e-03, -1.78744271e-03, -8.74478370e-04, 2.78469175e-03,
  269. -7.93006271e-04, -2.60777771e-03, 6.65482134e-04, -5.36628067e-04,
  270. 4.89111990e-04, 2.17217952e-04, 1.28579512e-03, 8.66245478e-04],
  271. dtype=float32), array([ 0.00335322, -0.00148289, -0.00107422, ..., -0.00025483,
  272. -0.00156629, 0.00116636], dtype=float32), array([-2.6028194e-03, -5.1744282e-05, 6.2261336e-04, ...,
  273. -4.1605160e-04, -1.8741619e-03, 7.8527154e-03], dtype=float32)]
  274. 600
  275. 600
  276. 1200
  277. 2400

离散小波变换为三层,输出的系数为cA3,cD3,cD2,cD1.分别为近似分量和细节分量

 

 

  1. import librosa
  2. import matplotlib.pyplot as plt
  3. import numpy as np
  4. import pywt
  5. import librosa.display
  6. from pywt import wavedec
  7. plt.rcParams['font.sans-serif']=['SimHei']
  8. plt.rcParams['axes.unicode_minus']=False
  9. wav, sr_ret = librosa.load('E:\PycharmProjects\pythonProject\AudioClassification-Pytorch-master\dataset/audio/fold1/1_001.wav',sr=48000,duration=0.1)
  10. coeffs = wavedec(wav, 'db1', level=3)
  11. cA3, cD3, cD2, cD1 = coeffs
  12. print(coeffs)
  13. print(cA3.shape[0])
  14. print(cD3.shape[0])
  15. print(cD2.shape[0])
  16. print(cD1.shape[0])
  17. plt.figure('cA3')
  18. x1 = range(0,600)
  19. y1 = cD3
  20. #创建图并命名
  21. ax1 = plt.gca()
  22. #设置x轴、y轴名称
  23. ax1.set_xlabel('分解系数')
  24. ax1.set_ylabel('幅度')
  25. ax1.plot(x1, y1, color='b', linewidth=1, alpha=1)
  26. x2 = range(0, 600)
  27. y2 = cD3
  28. #创建图并命名
  29. plt.figure('cD3')
  30. ax2 = plt.gca()
  31. #设置x轴、y轴名称
  32. ax2.set_xlabel('分解系数')
  33. ax2.set_ylabel('幅度')
  34. ax2.plot(x2, y2, color='b', linewidth=1, alpha=1)
  35. x3 = range(0,1200)
  36. y3 = cD2
  37. #创建图并命名
  38. plt.figure('cD2')
  39. ax3 = plt.gca()
  40. #设置x轴、y轴名称
  41. ax3.set_xlabel('分解系数')
  42. ax3.set_ylabel('幅度')
  43. ax3.plot(x3, y3, color='b', linewidth=1, alpha=1)
  44. x4 = range(0,2400)
  45. y4 = cD1
  46. #创建图并命名
  47. plt.figure('cD1')
  48. ax4 = plt.gca()
  49. #设置x轴、y轴名称
  50. ax4.set_xlabel('分解系数')
  51. ax4.set_ylabel('幅度')
  52. ax4.plot(x4, y4, color='b', linewidth=1, alpha=1)
  53. plt.show()

二维信号是指两个独立频率变量的函数,可以使用二维小波变换,但在这里我们使用的信号具有相同的采样频率,属于一维信号,只能使用一维小波变换。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/336209
推荐阅读
相关标签
  

闽ICP备14008679号