赞
踩
废话不多上直接上代码
- import torch
- from models.experimental import attempt_load
-
- # 设置设备
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- # 定义 YOLOv5 模型
- model = attempt_load(r'\best.pt', map_location=device) # 替换为你的本地路径
- model = model.autoshape()
- model = model.to(device).eval()
-
- # 图像路径
- image_path = r'img.jpg'
- # 执行推理
- results = model(image_path)
-
- # 打印检测结果
- for det in results.xyxy[0]:
- print(f"类别: {int(det[5])}, 置信度: {det[4]}, 边界框: {det[:4]}")
-
-

根据注释提示和自己的需求更改即可
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。