赞
踩
详见:
参考链接
运动模型方程:
[
x
.
y
.
θ
.
]
=
[
v
c
o
s
(
θ
)
v
s
i
n
(
θ
)
v
t
a
n
(
δ
)
L
]
\left[
可写为:
[
x
.
y
.
θ
.
]
=
[
c
o
s
(
θ
)
s
i
n
(
θ
)
0
]
v
+
[
0
0
1
]
w
\left[
利用泰勒展开,只保留一阶项
X
.
=
[
x
.
y
.
θ
.
]
=
[
v
c
o
s
(
θ
)
v
s
i
n
(
θ
)
v
t
a
n
(
δ
)
L
]
=
[
f
1
f
2
f
3
]
=
f
(
X
,
u
)
\overset{.}{X}= \left[
其中 X = [ x , y , θ ] T , u = [ v , δ ] T X=[x,y,\theta]^T,u=[v,\delta]^T X=[x,y,θ]T,u=[v,δ]T
△
X
.
=
X
.
−
X
r
.
=
[
x
.
−
x
r
.
y
.
−
y
r
.
θ
.
−
θ
r
.
]
≈
[
σ
f
1
σ
x
σ
f
1
σ
y
σ
f
1
σ
θ
σ
f
2
σ
x
σ
f
2
σ
y
σ
f
2
σ
θ
σ
f
3
σ
x
σ
f
3
σ
y
σ
f
3
σ
θ
]
[
x
−
x
r
y
−
y
r
θ
−
θ
r
]
+
[
σ
f
1
σ
v
σ
f
1
σ
δ
σ
f
2
σ
v
σ
f
2
σ
δ
σ
f
3
σ
v
σ
f
3
σ
δ
]
[
v
−
v
r
δ
−
δ
r
]
\bigtriangleup\overset{.}{X}=\overset{.}{X}-\overset{.}{X_r}= \left[
写为
△
X
.
=
A
m
△
X
+
B
m
△
u
A
m
=
[
0
0
−
v
s
i
n
(
θ
)
0
0
v
c
o
s
(
θ
)
0
0
0
]
B
m
=
[
c
o
s
(
θ
)
0
s
i
n
(
θ
)
0
t
a
n
(
δ
)
L
v
L
c
o
s
2
δ
]
A
m
△
X
(
k
)
+
B
m
△
u
(
k
)
=
△
X
.
=
△
X
(
k
+
1
)
−
△
X
(
k
)
T
A_m\bigtriangleup X(k) +B_m\bigtriangleup u(k)=\bigtriangleup\overset{.}{X}= \frac{\bigtriangleup X(k+1)-\bigtriangleup X(k)}{T}
Am△X(k)+Bm△u(k)=△X.=T△X(k+1)−△X(k)
变形可得:
△
X
(
k
+
1
)
=
(
I
+
T
A
m
)
△
X
(
k
)
+
T
B
m
△
u
(
k
)
=
A
△
X
(
k
)
+
B
△
u
(
k
)
A
m
=
[
1
0
−
v
T
s
i
n
(
θ
)
0
1
v
T
c
o
s
(
θ
)
0
0
1
]
B
m
=
[
T
c
o
s
(
θ
)
0
T
s
i
n
(
θ
)
0
T
t
a
n
(
δ
)
L
T
v
L
c
o
s
2
δ
]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。