赞
踩
蚁群算法(Ant Colony Algorithm, ACO) 于1991年首次提出,该算法模拟了自然界中蚂蚁的觅食行为。蚂蚁在寻找食物源时, 会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。 信息素浓度的大小表征路径的远近, 信息素浓度越高, 表示对应的路径距离越短。通常, 蚂蚁会以较大的概率优先选择信息素浓度较高的路径, 并释放一定量的信息素, 以增强该条路径上的信息素浓度, 这样,会形成一个正反馈。 最终, 蚂蚁能够找到一条从巢穴到食物源的最佳路径, 即距离最短。
不失一般性,我们定义一个具有N个节点的有权图
G = ( N , A ) G=(N,A) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span class="mord mathdefault">G</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span style="margin-right: 0.10903em;" class="mord mathdefault">N</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">A</span><span class="mclose">)</span></span></span></span></span>,其中N表示节点集合<span class="katex--inline"><span class="katex"><span class="katex-mathml"> N = 1 , 2 , . . . , n N={1,2,...,n} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span style="margin-right: 0.10903em;" class="mord mathdefault">N</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.83888em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span>,A表示边,<span class="katex--inline"><span class="katex"><span class="katex-mathml"> A = ( i , j ) ∣ i , j ∈ N A={(i,j)|i,j\in N} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathdefault">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span><span class="mclose">)</span><span class="mord">∣</span><span class="mord mathdefault">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.277778em;"></span><span style="margin-right: 0.10903em;" class="mord mathdefault">N</span></span></span></span></span></span>。节点之间的距离(权重)设为<span class="katex--inline"><span class="katex"><span class="katex-mathml"> ( d i j ) n × n (d_{ij})_{n\times n} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.258331em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mbin mtight">×</span><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.208331em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,<strong>目标函数</strong>即最小化起点到终点的距离之和。</p>
设整个蚂蚊群体中蚂蚊的数量为
m m </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault">m</span></span></span></span></span>, 路径节点的数量为 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> n n </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault">n</span></span></span></span></span>, 节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 与节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span> 之间的相互距离为 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> d i j ( i , j = 1 , 2 , … , n ) , t d_{i j}(i, j=1,2, \ldots, n), t </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord"><span class="mord mathdefault">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">n</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">t</span></span></span></span></span>时刻节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 与节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span> 连接路径上的信息素浓度为 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> τ i j ( t ) \tau_{i j}(t) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span></span></span></span></span> 。初始时刻, 各个节点间连接路径上的信息素浓度相同, 不妨设为<span class="katex--inline"><span class="katex"><span class="katex-mathml"> τ i j ( 0 ) = τ 0 \tau_{i j}(0)=\tau_{0} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.58056em; vertical-align: -0.15em;"></span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>。</p> </li><li> <p>蚂蚁 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> k ( k = 1 , 2 , … , m ) k(k=1,2, \ldots, m) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span><span class="mopen">(</span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span></span> 根据各个节点间连接路径上的信息素浓度决定其下一个访问节点, 设 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> P i j k ( t ) P_{i j}^{k}(t) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.24388em; vertical-align: -0.394772em;"></span><span class="mord"><span style="margin-right: 0.13889em;" class="mord mathdefault">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -2.44134em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.394772em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span></span></span></span></span> 表示 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> t t </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.61508em; vertical-align: 0em;"></span><span class="mord mathdefault">t</span></span></span></span></span> 时刻蚂蚊 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> k k </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span></span></span></span></span> 从节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 转移到节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span> 的概率, 其计算公式如下:<br> <span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"> P i j k = { [ τ i j ( t ) ] α ⋅ [ η i j ( t ) ] β ∑ s ∈ allow k [ τ i s ( t ) ] α ⋅ [ η i s ( t ) ] β s ∈ allow k 0 s ∉ allow k (1) \tag{1} P_{i j}^{k}= <span class="MathJax_Preview" style="color: inherit; display: none;"></span><div class="MathJax_Display"><span class="MathJax MathJax_FullWidth" id="MathJax-Element-1-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mo>{</mo><mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"><mtr><mtd><mfrac><mrow><msup><mrow><mo>[</mo><mrow><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>&#x03B1;</mi></mrow></msup><mo>&#x22C5;</mo><msup><mrow><mo>[</mo><mrow><msub><mi>&#x03B7;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>&#x03B2;</mi></mrow></msup></mrow><mrow><munder><mo>&#x2211;</mo><mrow class="MJX-TeXAtom-ORD"><mi>s</mi><mo>&#x2208;</mo><msub><mtext>&#xA0;allow&#xA0;</mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mrow></munder><msup><mrow><mo>[</mo><mrow><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>s</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>&#x03B1;</mi></mrow></msup><mo>&#x22C5;</mo><msup><mrow><mo>[</mo><mrow><msub><mi>&#x03B7;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>s</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>&#x03B2;</mi></mrow></msup></mrow></mfrac></mtd><mtd><mi>s</mi><mo>&#x2208;</mo><msub><mtext>&#xA0;allow&#xA0;</mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>s</mi><mo>&#x2209;</mo><msub><mtext>&#xA0;allow&#xA0;</mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mtd></mtr></mtable><mo fence="true" stretchy="true" symmetric="true"></mo></mrow></math>" role="presentation" style="position: relative;"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-1" style="width: 100%; display: inline-block; min-width: 15.847em;"><span style="display: inline-block; position: relative; width: 100%; height: 0px; font-size: 102%;"><span style="position: absolute; clip: rect(2.432em, 1015.54em, 6.381em, -999.997em); top: -4.655em; left: 0em; width: 100%;"><span class="mrow" id="MathJax-Span-2"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(2.432em, 1015.54em, 6.381em, -999.997em); top: -4.655em; left: 50%; margin-left: -7.743em;"><span class="mrow" id="MathJax-Span-3"><span class="mo" id="MathJax-Span-4" style="vertical-align: 2.078em;"><span style="display: inline-block; position: relative; width: 0.914em; height: 0px;"><span style="position: absolute; font-family: MathJax_Size4; top: -3.085em; left: 0em;">⎧<span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; font-family: MathJax_Size4; top: -1.263em; left: 0em;">⎩<span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; font-family: MathJax_Size4; top: -1.921em; left: 0em;">⎨<span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mtable" id="MathJax-Span-5" style="padding-right: 0.154em; padding-left: 0.154em;"><span style="display: inline-block; position: relative; width: 14.329em; height: 0px;"><span style="position: absolute; clip: rect(2.23em, 1008.46em, 5.976em, -999.997em); top: -4.452em; left: 0em;"><span style="display: inline-block; position: relative; width: 8.457em; height: 0px;"><span style="position: absolute; width: 100%; clip: rect(2.382em, 1008.46em, 5.115em, -999.997em); top: -4.604em; left: 0em;"><span class="mtd" id="MathJax-Span-6"><span class="mrow" id="MathJax-Span-7"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(2.382em, 1008.46em, 5.115em, -999.997em); top: -3.997em; left: 50%; margin-left: -4.25em;"><span class="mfrac" id="MathJax-Span-8"><span style="display: inline-block; position: relative; width: 8.203em; height: 0px; margin-right: 0.104em; margin-left: 0.104em;"><span style="position: absolute; clip: rect(3.091em, 1005.01em, 4.457em, -999.997em); top: -4.705em; left: 50%; margin-left: -2.529em;"><span class="mrow" id="MathJax-Span-9"><span style="display: inline-block; position: relative; width: 5.014em; height: 0px;"><span style="position: absolute; clip: rect(3.091em, 1005.01em, 4.457em, -999.997em); top: -3.997em; left: 0em;"><span class="msubsup" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 2.331em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1001.88em, 4.356em, -999.997em); top: -3.997em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mo" id="MathJax-Span-12" style=""><span><span style="font-size: 70.7%; font-family: MathJax_Main;">[</span></span></span><span class="mrow" id="MathJax-Span-13"><span class="msubsup" id="MathJax-Span-14"><span style="display: inline-block; position: relative; width: 0.762em; height: 0px;"><span style="position: absolute; clip: rect(3.546em, 1000.36em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-15" style="font-size: 70.7%; font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.053em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.895em; left: 0.306em;"><span class="texatom" id="MathJax-Span-16"><span class="mrow" id="MathJax-Span-17"><span style="display: inline-block; position: relative; width: 0.357em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.36em, 4.255em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-18" style="font-size: 50%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-19" style="font-size: 50%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-20" style="font-size: 70.7%; font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-21" style="font-size: 70.7%; font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-22" style="font-size: 70.7%; font-family: MathJax_Main;">)</span></span><span class="mo" id="MathJax-Span-23" style=""><span><span style="font-size: 70.7%; font-family: MathJax_Main;">]</span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -4.351em; left: 1.926em;"><span class="texatom" id="MathJax-Span-24"><span class="mrow" id="MathJax-Span-25"><span style="display: inline-block; position: relative; width: 0.306em; height: 0px;"><span style="position: absolute; clip: rect(3.647em, 1000.31em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-26" style="font-size: 50%; font-family: MathJax_Math-italic;">α</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-27" style="font-size: 70.7%; font-family: MathJax_Main;">⋅</span><span class="msubsup" id="MathJax-Span-28"><span style="display: inline-block; position: relative; width: 2.534em; height: 0px;"><span style="position: absolute; clip: rect(3.242em, 1002.03em, 4.457em, -999.997em); top: -3.997em; left: 0em;"><span class="mrow" id="MathJax-Span-29"><span class="mo" id="MathJax-Span-30" style="vertical-align: 0em;"><span><span style="font-size: 70.7%; font-family: MathJax_Size1;">[</span></span></span><span class="mrow" id="MathJax-Span-31"><span class="msubsup" id="MathJax-Span-32"><span style="display: inline-block; position: relative; width: 0.762em; height: 0px;"><span style="position: absolute; clip: rect(3.546em, 1000.36em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-33" style="font-size: 70.7%; font-family: MathJax_Math-italic;">η<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.003em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.794em; left: 0.357em;"><span class="texatom" id="MathJax-Span-34"><span class="mrow" id="MathJax-Span-35"><span style="display: inline-block; position: relative; width: 0.357em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.36em, 4.255em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-36" style="font-size: 50%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-37" style="font-size: 50%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-38" style="font-size: 70.7%; font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-39" style="font-size: 70.7%; font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-40" style="font-size: 70.7%; font-family: MathJax_Main;">)</span></span><span class="mo" id="MathJax-Span-41" style="vertical-align: 0em;"><span><span style="font-size: 70.7%; font-family: MathJax_Size1;">]</span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -4.402em; left: 2.179em;"><span class="texatom" id="MathJax-Span-42"><span class="mrow" id="MathJax-Span-43"><span style="display: inline-block; position: relative; width: 0.306em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.31em, 4.255em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-44" style="font-size: 50%; font-family: MathJax_Math-italic;">β<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.003em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(3.141em, 1008.1em, 4.559em, -999.997em); top: -3.389em; left: 50%; margin-left: -4.047em;"><span class="mrow" id="MathJax-Span-45"><span style="display: inline-block; position: relative; width: 8.102em; height: 0px;"><span style="position: absolute; clip: rect(3.141em, 1008.1em, 4.559em, -999.997em); top: -3.997em; left: 0em;"><span class="munderover" id="MathJax-Span-46"><span style="display: inline-block; position: relative; width: 3.04em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1000.71em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mo" id="MathJax-Span-47" style="font-size: 70.7%; font-family: MathJax_Size1; vertical-align: 0em;">∑</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.794em; left: 0.762em;"><span class="texatom" id="MathJax-Span-48"><span class="mrow" id="MathJax-Span-49"><span style="display: inline-block; position: relative; width: 2.281em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1002.28em, 4.356em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-50" style="font-size: 50%; font-family: MathJax_Math-italic;">s</span><span class="mo" id="MathJax-Span-51" style="font-size: 50%; font-family: MathJax_Main;">∈</span><span class="msubsup" id="MathJax-Span-52"><span style="display: inline-block; position: relative; width: 1.673em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1001.27em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mtext" id="MathJax-Span-53" style="font-size: 50%; font-family: MathJax_Main;"> allow </span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 1.369em;"><span class="texatom" id="MathJax-Span-54"><span class="mrow" id="MathJax-Span-55"><span style="display: inline-block; position: relative; width: 0.256em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.26em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-56" style="font-size: 50%; font-family: MathJax_Math-italic;">k</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="msubsup" id="MathJax-Span-57" style="padding-left: 0.154em;"><span style="display: inline-block; position: relative; width: 2.331em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1001.88em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mrow" id="MathJax-Span-58"><span class="mo" id="MathJax-Span-59" style="font-size: 70.7%; font-family: MathJax_Main;">[</span><span class="mrow" id="MathJax-Span-60"><span class="msubsup" id="MathJax-Span-61"><span style="display: inline-block; position: relative; width: 0.762em; height: 0px;"><span style="position: absolute; clip: rect(3.546em, 1000.36em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-62" style="font-size: 70.7%; font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.053em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.895em; left: 0.306em;"><span class="texatom" id="MathJax-Span-63"><span class="mrow" id="MathJax-Span-64"><span style="display: inline-block; position: relative; width: 0.408em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.41em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-65" style="font-size: 50%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-66" style="font-size: 50%; font-family: MathJax_Math-italic;">s</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-67" style="font-size: 70.7%; font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-68" style="font-size: 70.7%; font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-69" style="font-size: 70.7%; font-family: MathJax_Main;">)</span></span><span class="mo" id="MathJax-Span-70" style="font-size: 70.7%; font-family: MathJax_Main;">]</span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -4.351em; left: 1.977em;"><span class="texatom" id="MathJax-Span-71"><span class="mrow" id="MathJax-Span-72"><span style="display: inline-block; position: relative; width: 0.306em; height: 0px;"><span style="position: absolute; clip: rect(3.647em, 1000.31em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-73" style="font-size: 50%; font-family: MathJax_Math-italic;">α</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-74" style="font-size: 70.7%; font-family: MathJax_Main;">⋅</span><span class="msubsup" id="MathJax-Span-75"><span style="display: inline-block; position: relative; width: 2.331em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1001.93em, 4.356em, -999.997em); top: -3.997em; left: 0em;"><span class="mrow" id="MathJax-Span-76"><span class="mo" id="MathJax-Span-77" style=""><span><span style="font-size: 70.7%; font-family: MathJax_Main;">[</span></span></span><span class="mrow" id="MathJax-Span-78"><span class="msubsup" id="MathJax-Span-79"><span style="display: inline-block; position: relative; width: 0.812em; height: 0px;"><span style="position: absolute; clip: rect(3.546em, 1000.36em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-80" style="font-size: 70.7%; font-family: MathJax_Math-italic;">η<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.003em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.794em; left: 0.357em;"><span class="texatom" id="MathJax-Span-81"><span class="mrow" id="MathJax-Span-82"><span style="display: inline-block; position: relative; width: 0.408em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.41em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-83" style="font-size: 50%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-84" style="font-size: 50%; font-family: MathJax_Math-italic;">s</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-85" style="font-size: 70.7%; font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-86" style="font-size: 70.7%; font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-87" style="font-size: 70.7%; font-family: MathJax_Main;">)</span></span><span class="mo" id="MathJax-Span-88" style=""><span><span style="font-size: 70.7%; font-family: MathJax_Main;">]</span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -4.351em; left: 2.027em;"><span class="texatom" id="MathJax-Span-89"><span class="mrow" id="MathJax-Span-90"><span style="display: inline-block; position: relative; width: 0.306em; height: 0px;"><span style="position: absolute; clip: rect(3.495em, 1000.31em, 4.255em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-91" style="font-size: 50%; font-family: MathJax_Math-italic;">β<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.003em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(0.863em, 1008.2em, 1.217em, -999.997em); top: -1.263em; left: 0em;"><span style="display: inline-block; overflow: hidden; vertical-align: 0em; border-top: 1.3px solid; width: 8.203em; height: 0px;"></span><span style="display: inline-block; width: 0px; height: 1.066em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; width: 100%; clip: rect(3.192em, 1000.46em, 4.154em, -999.997em); top: -2.63em; left: 0em;"><span class="mtd" id="MathJax-Span-101"><span class="mrow" id="MathJax-Span-102"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.192em, 1000.46em, 4.154em, -999.997em); top: -3.997em; left: 50%; margin-left: -0.251em;"><span class="mn" id="MathJax-Span-103" style="font-family: MathJax_Main;">0</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; width: 0px; height: 4.457em;"></span></span><span style="position: absolute; clip: rect(2.534em, 1004.86em, 5.723em, -999.997em); top: -3.997em; left: 9.469em;"><span style="display: inline-block; position: relative; width: 4.862em; height: 0px;"><span style="position: absolute; width: 100%; clip: rect(3.141em, 1004.86em, 4.305em, -999.997em); top: -4.604em; left: 0em;"><span class="mtd" id="MathJax-Span-92"><span class="mrow" id="MathJax-Span-93"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.141em, 1004.86em, 4.305em, -999.997em); top: -3.997em; left: 50%; margin-left: -2.427em;"><span class="mi" id="MathJax-Span-94" style="font-family: MathJax_Math-italic;">s</span><span class="mo" id="MathJax-Span-95" style="font-family: MathJax_Main; padding-left: 0.256em;">∈</span><span class="msubsup" id="MathJax-Span-96" style="padding-left: 0.256em;"><span style="display: inline-block; position: relative; width: 3.242em; height: 0px;"><span style="position: absolute; clip: rect(3.141em, 1002.53em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mtext" id="MathJax-Span-97" style="font-family: MathJax_Main;"> allow </span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 2.787em;"><span class="texatom" id="MathJax-Span-98"><span class="mrow" id="MathJax-Span-99"><span style="display: inline-block; position: relative; width: 0.357em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1000.36em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-100" style="font-size: 70.7%; font-family: MathJax_Math-italic;">k</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; width: 100%; clip: rect(3.141em, 1004.86em, 4.356em, -999.997em); top: -2.63em; left: 0em;"><span class="mtd" id="MathJax-Span-104"><span class="mrow" id="MathJax-Span-105"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.141em, 1004.86em, 4.356em, -999.997em); top: -3.997em; left: 50%; margin-left: -2.427em;"><span class="mi" id="MathJax-Span-106" style="font-family: MathJax_Math-italic;">s</span><span class="mo" id="MathJax-Span-107" style="font-family: MathJax_Main; padding-left: 0.256em;">∉</span><span class="msubsup" id="MathJax-Span-108" style="padding-left: 0.256em;"><span style="display: inline-block; position: relative; width: 3.242em; height: 0px;"><span style="position: absolute; clip: rect(3.141em, 1002.53em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mtext" id="MathJax-Span-109" style="font-family: MathJax_Main;"> allow </span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 2.787em;"><span class="texatom" id="MathJax-Span-110"><span class="mrow" id="MathJax-Span-111"><span style="display: inline-block; position: relative; width: 0.357em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1000.36em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-112" style="font-size: 70.7%; font-family: MathJax_Math-italic;">k</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-113"></span></span><span style="display: inline-block; width: 0px; height: 4.66em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.66em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -1.65em; border-left: 0px solid; width: 0px; height: 3.824em;"></span></span></nobr><span class="MJX_Assistive_MathML MJX_Assistive_MathML_Block" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow><mo>{</mo><mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"><mtr><mtd><mfrac><mrow><msup><mrow><mo>[</mo><mrow><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mrow><msub><mi>η</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>β</mi></mrow></msup></mrow><mrow><munder><mo>∑</mo><mrow class="MJX-TeXAtom-ORD"><mi>s</mi><mo>∈</mo><msub><mtext> allow </mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mrow></munder><msup><mrow><mo>[</mo><mrow><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>s</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>α</mi></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mrow><msub><mi>η</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>s</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow class="MJX-TeXAtom-ORD"><mi>β</mi></mrow></msup></mrow></mfrac></mtd><mtd><mi>s</mi><mo>∈</mo><msub><mtext> allow </mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>s</mi><mo>∉</mo><msub><mtext> allow </mtext><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msub></mtd></mtr></mtable><mo fence="true" stretchy="true" symmetric="true"></mo></mrow></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-1">\begin{cases}\frac{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}(t)\right]^{\beta}}{\sum_{s \in \text { allow }_{k}}\left[\tau_{i s}(t)\right]^{\alpha} \cdot\left[\eta_{i s}(t)\right]^{\beta}} & s \in \text { allow }_{k} \\ 0 & s \notin \text { allow }_{k}\end{cases}</script> </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.28222em; vertical-align: -0.383108em;"></span><span class="mord"><span style="margin-right: 0.13889em;" class="mord mathdefault">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.899108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.383108em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 3.60004em; vertical-align: -1.55002em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.05002em;"><span class="" style="top: -2.49999em;"><span class="pstrut" style="height: 3.15em;"></span><span class="delimsizinginner delim-size4"><span class="">⎩</span></span></span><span class="" style="top: -3.15001em;"><span class="pstrut" style="height: 3.15em;"></span><span class="delimsizinginner delim-size4"><span class="">⎨</span></span></span><span class="" style="top: -4.30002em;"><span class="pstrut" style="height: 3.15em;"></span><span class="delimsizinginner delim-size4"><span class="">⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.55002em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.96564em;"><span class="" style="top: -3.96564em;"><span class="pstrut" style="height: 3.15624em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.15624em;"><span class="" style="top: -2.56478em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mop op-symbol small-op mtight" style="position: relative; top: -0.000005em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.17459em;"><span class="" style="top: -2.17856em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">s</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight"> allow </span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3448em;"><span class="" style="top: -2.3448em; margin-right: 0.1em;"><span class="pstrut" style="height: 2.69444em;"></span><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.34964em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.571181em;"><span class=""></span></span></span></span></span></span><span class="minner mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top: 0em;"><span class="mtight">[</span></span><span class="mord mtight"><span style="margin-right: 0.1132em;" class="mord mathdefault mtight">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.328086em;"><span class="" style="top: -2.357em; margin-left: -0.1132em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span><span class="mclose mtight delimcenter" style="top: 0em;"><span class="mtight">]</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.704686em;"><span class="" style="top: -2.89714em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span style="margin-right: 0.0037em;" class="mord mathdefault mtight">α</span></span></span></span></span></span></span></span></span><span class="mbin mtight">⋅</span><span class="minner mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top: 0em;"><span class="mtight">[</span></span><span class="mord mtight"><span style="margin-right: 0.03588em;" class="mord mathdefault mtight">η</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.328086em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span><span class="mclose mtight delimcenter" style="top: 0em;"><span class="mtight">]</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.893171em;"><span class="" style="top: -2.89714em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span style="margin-right: 0.05278em;" class="mord mathdefault mtight">β</span></span></span></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.50732em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="minner mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top: 0em;"><span class="mtight">[</span></span><span class="mord mtight"><span style="margin-right: 0.1132em;" class="mord mathdefault mtight">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.328086em;"><span class="" style="top: -2.357em; margin-left: -0.1132em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.281886em;"><span class=""></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span><span class="mclose mtight delimcenter" style="top: 0em;"><span class="mtight">]</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.738543em;"><span class="" style="top: -2.931em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span style="margin-right: 0.0037em;" class="mord mathdefault mtight">α</span></span></span></span></span></span></span></span></span><span class="mbin mtight">⋅</span><span class="minner mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top: 0em;"><span class="mtight">[</span></span><span class="mord mtight"><span style="margin-right: 0.03588em;" class="mord mathdefault mtight">η</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.328086em;"><span class="" style="top: -2.357em; margin-left: -0.03588em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.281886em;"><span class=""></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">t</span><span class="mclose mtight">)</span><span class="mclose mtight delimcenter" style="top: 0em;"><span class="mtight">]</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.927029em;"><span class="" style="top: -2.931em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span style="margin-right: 0.05278em;" class="mord mathdefault mtight">β</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.835047em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span class="" style="top: -2.1226em;"><span class="pstrut" style="height: 3.15624em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.46564em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 1em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.96564em;"><span class="" style="top: -3.96564em;"><span class="pstrut" style="height: 3.15624em;"></span><span class="mord"><span class="mord mathdefault">s</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mord"><span class="mord text"><span class="mord"> allow </span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -2.1226em;"><span class="pstrut" style="height: 3.15624em;"></span><span class="mord"><span class="mord mathdefault">s</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.75em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="llap"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right: 0.0555556em;"></span></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.25em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mord"><span class="mord text"><span class="mord"> allow </span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.46564em;"><span class=""></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height: 3.60004em; vertical-align: -1.55002em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></span></p> <p>其中,</p>
η i j ( t ) \eta_{i j}(t) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">η</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span></span></span></span></span> 为<strong>启发函数</strong>, <span class="katex--inline"><span class="katex"><span class="katex-mathml"> η i j ( t ) = 1 / d i j \eta_{i j}(t)=1 / d_{i j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">η</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mord"><span class="mord mathdefault">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span>, 表示蚂蚊从节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 转移到节点 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span> 的期望程度,</li><li><span class="katex--inline"><span class="katex"><span class="katex-mathml"> a l l o w k ( k = 1 , 2 , … , m ) allow_{k}(k=1,2, \ldots, m) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault">a</span><span style="margin-right: 0.01968em;" class="mord mathdefault">l</span><span style="margin-right: 0.01968em;" class="mord mathdefault">l</span><span class="mord mathdefault">o</span><span class="mord"><span style="margin-right: 0.02691em;" class="mord mathdefault">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-left: -0.02691em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span></span> 为蚂蚁<span class="katex--inline"><span class="katex"><span class="katex-mathml"> k k </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span></span></span></span></span>待访问节点的集合。开始时, <span class="katex--inline"><span class="katex"><span class="katex-mathml"> a l l o w k allow_{k} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.84444em; vertical-align: -0.15em;"></span><span class="mord mathdefault">a</span><span style="margin-right: 0.01968em;" class="mord mathdefault">l</span><span style="margin-right: 0.01968em;" class="mord mathdefault">l</span><span class="mord mathdefault">o</span><span class="mord"><span style="margin-right: 0.02691em;" class="mord mathdefault">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-left: -0.02691em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>中有(n-1)个元素,即包括除了蚂蚁<span class="katex--inline"><span class="katex"><span class="katex-mathml"> k k </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span></span></span></span></span>出发节点的其它所有节点。随着时间的推进, allow <span class="katex--inline"><span class="katex"><span class="katex-mathml"> k _{k} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.486108em; vertical-align: -0.15em;"></span><span class="mord"><span class=""></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span> 中的元素不断减少, 直至为空, 即表示所有的节点均访问完毕。</li><li><span class="katex--inline"><span class="katex"><span class="katex-mathml"> α \alpha </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span style="margin-right: 0.0037em;" class="mord mathdefault">α</span></span></span></span></span> 为<strong>信息素重要程度因子</strong>, 其值越大, 蚂蚁选择之前走过的路径可能性就越大,搜索路径的随机性减弱, 其值越小,蚁群搜索范围就会减少,容易陷入局部最优。一般取值范围为<span class="katex--inline"><span class="katex"><span class="katex-mathml"> [ 0 , 5 ] [0,5] </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">5</span><span class="mclose">]</span></span></span></span></span>。</li><li><span class="katex--inline"><span class="katex"><span class="katex-mathml"> β \beta </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.88888em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05278em;" class="mord mathdefault">β</span></span></span></span></span> 为<strong>启发函数重要程度因子</strong>, 其值越大, 表示启发函数在转移中的作用越大, 即蚂蚊会以较大的摡率转移到距离短的节点,蚁群就越容易选择局部较短路径,这时算法的收敛速度是加快了,但是随机性却不高,容易得到局部的相对最优。一般取值范围为<span class="katex--inline"><span class="katex"><span class="katex-mathml"> [ 0 , 5 ] [0,5] </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">5</span><span class="mclose">]</span></span></span></span></span>。</li></ul> </li><li> <p>计算完节点间的转移概率后,采用与遗传算法中一样的<strong>轮盘赌方法</strong>选择下一个待访问的节点。</p>
依据轮盘赌法来选择下一个待访问的节点, 而不是直接按概率大小选择,是因为这样可以扩大搜索范围,进而寻找全局最优,避免陷入局部最优。
首先计算每个个体的累积概率
q j q_{j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span> ,如下式:<br> <span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"> q j = ∑ j = 1 l P i j k (2) \tag{2} q_{j}=\sum_{j=1}^{l} P_{i j}^{k} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 3.24989em; vertical-align: -1.41378em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.83611em;"><span class="" style="top: -1.87233em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05001em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.30001em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.01968em;" class="mord mathdefault mtight">l</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.41378em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord"><span style="margin-right: 0.13889em;" class="mord mathdefault">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.899108em;"><span class="" style="top: -2.453em; margin-left: -0.13889em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.383108em;"><span class=""></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 3.24989em; vertical-align: -1.41378em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></span><br> <span class="katex--inline"><span class="katex"><span class="katex-mathml"> q j q_{j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span> 相当于转盘上的跨度,跨度越大的区域越容易选到,<span class="katex--inline"><span class="katex"><span class="katex-mathml"> l l </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span style="margin-right: 0.01968em;" class="mord mathdefault">l</span></span></span></span></span>代表下一步可选路径的数量。<br> 之后随机生成一个 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> ( 0 , 1 ) (0 , 1) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mord cjk_fallback">,</span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span> 的小数<span class="katex--inline"><span class="katex"><span class="katex-mathml"> r \mathrm{r} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord"><span class="mord mathrm">r</span></span></span></span></span></span>,比较所有 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> q j q_{j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span> 与 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> r \mathrm{r} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord"><span class="mord mathrm">r</span></span></span></span></span></span> 的大小,选出大于 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> r r </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span></span></span></span></span> 的最小的那个 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> q j , q_{j} , </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mord cjk_fallback">,</span></span></span></span></span> 该 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> q j q_{j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.716668em; vertical-align: -0.286108em;"></span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span> 对应的索引 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span>即为第 <span class="katex--inline"><span class="katex"><span class="katex-mathml"> k \mathrm{k} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span class="mord"><span class="mord mathrm">k</span></span></span></span></span></span> 只蚂蚁在第<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span>条路径时下一步要选择的目标点。<br> <span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"> r = rand ( 0 , 1 ) j = index { min [ q j > r ] } (3) \tag{3} <span class="MathJax_Preview" style="color: inherit; display: none;"></span><div class="MathJax_Display"><span class="MathJax MathJax_FullWidth" id="MathJax-Element-2-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"><mtr><mtd><mi>r</mi><mo>=</mo><mi>rand</mi><mo>&#x2061;</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mi>j</mi><mo>=</mo><mi>index</mi><mo>&#x2061;</mo><mrow><mo>{</mo><mrow><mo movablelimits="true" form="prefix">min</mo><mrow><mo>[</mo><mrow><msub><mi>q</mi><mrow class="MJX-TeXAtom-ORD"><mi>j</mi></mrow></msub><mo>&gt;</mo><mi>r</mi></mrow><mo>]</mo></mrow></mrow><mo>}</mo></mrow></mtd></mtr></mtable></math>" role="presentation" style="position: relative;"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-114" style="width: 100%; display: inline-block; min-width: 10.33em;"><span style="display: inline-block; position: relative; width: 100%; height: 0px; font-size: 102%;"><span style="position: absolute; clip: rect(2.382em, 1010.08em, 5.115em, -999.997em); top: -3.997em; left: 0em; width: 100%;"><span class="mrow" id="MathJax-Span-115"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(2.382em, 1010.08em, 5.115em, -999.997em); top: -3.997em; left: 50%; margin-left: -5.06em;"><span class="mtable" id="MathJax-Span-116" style="padding-left: 0.154em;"><span style="display: inline-block; position: relative; width: 9.975em; height: 0px;"><span style="position: absolute; clip: rect(2.432em, 1009.92em, 5.115em, -999.997em); top: -3.997em; left: 0em;"><span style="display: inline-block; position: relative; width: 9.975em; height: 0px;"><span style="position: absolute; width: 100%; clip: rect(3.091em, 1005.88em, 4.407em, -999.997em); top: -4.655em; left: 0em;"><span class="mtd" id="MathJax-Span-117"><span class="mrow" id="MathJax-Span-118"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.091em, 1005.88em, 4.407em, -999.997em); top: -3.997em; left: 50%; margin-left: -2.984em;"><span class="mi" id="MathJax-Span-119" style="font-family: MathJax_Math-italic;">r</span><span class="mo" id="MathJax-Span-120" style="font-family: MathJax_Main; padding-left: 0.256em;">=</span><span class="mi" id="MathJax-Span-121" style="font-family: MathJax_Main; padding-left: 0.256em;">rand</span><span class="mo" id="MathJax-Span-122"></span><span class="mo" id="MathJax-Span-123" style="font-family: MathJax_Main;">(</span><span class="mn" id="MathJax-Span-124" style="font-family: MathJax_Main;">0</span><span class="mo" id="MathJax-Span-125" style="font-family: MathJax_Main;">,</span><span class="mn" id="MathJax-Span-126" style="font-family: MathJax_Main; padding-left: 0.154em;">1</span><span class="mo" id="MathJax-Span-127" style="font-family: MathJax_Main;">)</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; width: 100%; clip: rect(3.091em, 1009.92em, 4.457em, -999.997em); top: -3.339em; left: 0em;"><span class="mtd" id="MathJax-Span-128"><span class="mrow" id="MathJax-Span-129"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.091em, 1009.92em, 4.457em, -999.997em); top: -3.997em; left: 50%; margin-left: -5.009em;"><span class="mi" id="MathJax-Span-130" style="font-family: MathJax_Math-italic;">j</span><span class="mo" id="MathJax-Span-131" style="font-family: MathJax_Main; padding-left: 0.256em;">=</span><span class="mi" id="MathJax-Span-132" style="font-family: MathJax_Main; padding-left: 0.256em;">index</span><span class="mo" id="MathJax-Span-133"></span><span class="mrow" id="MathJax-Span-134"><span class="mo" id="MathJax-Span-135" style=""><span style="font-family: MathJax_Main;">{</span></span><span class="mrow" id="MathJax-Span-136"><span class="mo" id="MathJax-Span-137" style="font-family: MathJax_Main;">min</span><span class="mrow" id="MathJax-Span-138" style="padding-left: 0.154em;"><span class="mo" id="MathJax-Span-139" style=""><span style="font-family: MathJax_Main;">[</span></span><span class="mrow" id="MathJax-Span-140"><span class="msubsup" id="MathJax-Span-141"><span style="display: inline-block; position: relative; width: 0.812em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.46em, 4.356em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-142" style="font-family: MathJax_Math-italic;">q<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.003em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 0.458em;"><span class="texatom" id="MathJax-Span-143"><span class="mrow" id="MathJax-Span-144"><span style="display: inline-block; position: relative; width: 0.306em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.31em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-145" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-146" style="font-family: MathJax_Main; padding-left: 0.256em;">></span><span class="mi" id="MathJax-Span-147" style="font-family: MathJax_Math-italic; padding-left: 0.256em;">r</span></span><span class="mo" id="MathJax-Span-148" style=""><span style="font-family: MathJax_Main;">]</span></span></span></span><span class="mo" id="MathJax-Span-149" style=""><span style="font-family: MathJax_Main;">}</span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -1.03em; border-left: 0px solid; width: 0px; height: 2.584em;"></span></span></nobr><span class="MJX_Assistive_MathML MJX_Assistive_MathML_Block" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable rowspacing="3pt" columnspacing="1em" displaystyle="true"><mtr><mtd><mi>r</mi><mo>=</mo><mi>rand</mi><mo></mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mi>j</mi><mo>=</mo><mi>index</mi><mo></mo><mrow><mo>{</mo><mrow><mo movablelimits="true" form="prefix">min</mo><mrow><mo>[</mo><mrow><msub><mi>q</mi><mrow class="MJX-TeXAtom-ORD"><mi>j</mi></mrow></msub><mo>></mo><mi>r</mi></mrow><mo>]</mo></mrow></mrow><mo>}</mo></mrow></mtd></mtr></mtable></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-2">\begin{gathered} r=\operatorname{rand}(0,1) \\ j=\operatorname{index}\left\{\min \left[q_{j}>r\right]\right\} \end{gathered}</script> </span><span class="katex-html"><span class="base"><span class="strut" style="height: 3em; vertical-align: -1.25em;"></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.75em;"><span class="" style="top: -3.91em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mop"><span class="mord mathrm">r</span><span class="mord mathrm">a</span><span class="mord mathrm">n</span><span class="mord mathrm">d</span></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span><span class="" style="top: -2.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mop"><span class="mord mathrm">i</span><span class="mord mathrm">n</span><span class="mord mathrm">d</span><span class="mord mathrm">e</span><span class="mord mathrm">x</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">{<!-- --></span><span class="mop">min</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">[</span><span class="mord"><span style="margin-right: 0.03588em;" class="mord mathdefault">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right: 0.277778em;"></span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mclose delimcenter" style="top: 0em;">]</span></span><span class="mclose delimcenter" style="top: 0em;">}</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 1.25em;"><span class=""></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height: 3em; vertical-align: -1.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></span></p> </li><li> <p>在蚂蚁释放信息素的同时,各个节点间连接路径上的信息素逐渐消失,设参数<span class="katex--inline"><span class="katex"><span class="katex-mathml"> ρ ( 0 < ρ < 1 , 一 般 取 值 为 0.1 \rho(0<\rho<1,一般取值为0.1 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault">ρ</span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.73354em; vertical-align: -0.19444em;"></span><span class="mord mathdefault">ρ</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.64444em; vertical-align: 0em;"></span><span class="mord">1</span><span class="mord cjk_fallback">,</span><span class="mord cjk_fallback">一</span><span class="mord cjk_fallback">般</span><span class="mord cjk_fallback">取</span><span class="mord cjk_fallback">值</span><span class="mord cjk_fallback">为</span><span class="mord">0</span><span class="mord">.</span><span class="mord">1</span></span></span></span></span>~<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 0.99 ) 0.99) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">0</span><span class="mord">.</span><span class="mord">9</span><span class="mord">9</span><span class="mclose">)</span></span></span></span></span>表示 <strong>信息素的挥发程度</strong>。当所有的蚂蚁完成一次循环后,各个节点间链接路径上的信息素浓度需进行更新,计算公式为<br> <span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"> { τ i j ( t + 1 ) = ( 1 − ρ ) τ i j ( t ) + Δ τ i j Δ τ i j = ∑ k = 1 n Δ τ i j k (4) \tag{4} \left\{<span class="MathJax_Preview" style="color: inherit; display: none;"></span><div class="MathJax_Display"><span class="MathJax MathJax_FullWidth" id="MathJax-Element-3-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="left" rowspacing="4pt" columnspacing="1em"><mtr><mtd><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">&#x0394;</mi><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd><mi mathvariant="normal">&#x0394;</mi><msub><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><munderover><mo>&#x2211;</mo><mrow class="MJX-TeXAtom-ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow class="MJX-TeXAtom-ORD"><mi>n</mi></mrow></munderover><mi mathvariant="normal">&#x0394;</mi><msubsup><mi>&#x03C4;</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msubsup></mtd></mtr></mtable></math>" role="presentation" style="position: relative;"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-150" style="width: 100%; display: inline-block; min-width: 13.873em;"><span style="display: inline-block; position: relative; width: 100%; height: 0px; font-size: 102%;"><span style="position: absolute; clip: rect(2.23em, 1013.57em, 5.318em, -999.997em); top: -3.997em; left: 0em; width: 100%;"><span class="mrow" id="MathJax-Span-151"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(2.23em, 1013.57em, 5.318em, -999.997em); top: -3.997em; left: 50%; margin-left: -6.781em;"><span class="mtable" id="MathJax-Span-152" style="padding-left: 0.154em;"><span style="display: inline-block; position: relative; width: 13.418em; height: 0px;"><span style="position: absolute; clip: rect(2.281em, 1013.42em, 5.318em, -999.997em); top: -3.997em; left: 0em;"><span style="display: inline-block; position: relative; width: 13.418em; height: 0px;"><span style="position: absolute; width: 100%; clip: rect(3.091em, 1013.42em, 4.457em, -999.997em); top: -4.857em; left: 0em;"><span class="mtd" id="MathJax-Span-153"><span class="mrow" id="MathJax-Span-154"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(3.091em, 1013.42em, 4.457em, -999.997em); top: -3.997em; left: 50%; margin-left: -6.68em;"><span class="msubsup" id="MathJax-Span-155"><span style="display: inline-block; position: relative; width: 1.066em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-156" style="font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.104em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 0.458em;"><span class="texatom" id="MathJax-Span-157"><span class="mrow" id="MathJax-Span-158"><span style="display: inline-block; position: relative; width: 0.559em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-159" style="font-size: 70.7%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-160" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-161" style="font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-162" style="font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-163" style="font-family: MathJax_Main; padding-left: 0.205em;">+</span><span class="mn" id="MathJax-Span-164" style="font-family: MathJax_Main; padding-left: 0.205em;">1</span><span class="mo" id="MathJax-Span-165" style="font-family: MathJax_Main;">)</span><span class="mo" id="MathJax-Span-166" style="font-family: MathJax_Main; padding-left: 0.256em;">=</span><span class="mo" id="MathJax-Span-167" style="font-family: MathJax_Main; padding-left: 0.256em;">(</span><span class="mn" id="MathJax-Span-168" style="font-family: MathJax_Main;">1</span><span class="mo" id="MathJax-Span-169" style="font-family: MathJax_Main; padding-left: 0.205em;">−</span><span class="mi" id="MathJax-Span-170" style="font-family: MathJax_Math-italic; padding-left: 0.205em;">ρ</span><span class="mo" id="MathJax-Span-171" style="font-family: MathJax_Main;">)</span><span class="msubsup" id="MathJax-Span-172"><span style="display: inline-block; position: relative; width: 1.066em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-173" style="font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.104em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 0.458em;"><span class="texatom" id="MathJax-Span-174"><span class="mrow" id="MathJax-Span-175"><span style="display: inline-block; position: relative; width: 0.559em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-176" style="font-size: 70.7%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-177" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-178" style="font-family: MathJax_Main;">(</span><span class="mi" id="MathJax-Span-179" style="font-family: MathJax_Math-italic;">t</span><span class="mo" id="MathJax-Span-180" style="font-family: MathJax_Main;">)</span><span class="mo" id="MathJax-Span-181" style="font-family: MathJax_Main; padding-left: 0.205em;">+</span><span class="mi" id="MathJax-Span-182" style="font-family: MathJax_Main; padding-left: 0.205em;">Δ</span><span class="msubsup" id="MathJax-Span-183"><span style="display: inline-block; position: relative; width: 1.066em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-184" style="font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.104em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 0.458em;"><span class="texatom" id="MathJax-Span-185"><span class="mrow" id="MathJax-Span-186"><span style="display: inline-block; position: relative; width: 0.559em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-187" style="font-size: 70.7%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-188" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; width: 100%; clip: rect(2.989em, 1007.6em, 4.609em, -999.997em); top: -3.288em; left: 0em;"><span class="mtd" id="MathJax-Span-189"><span class="mrow" id="MathJax-Span-190"><span style="display: inline-block; position: relative; width: 100%; height: 0px;"><span style="position: absolute; clip: rect(2.989em, 1007.6em, 4.609em, -999.997em); top: -3.997em; left: 50%; margin-left: -3.794em;"><span class="mi" id="MathJax-Span-191" style="font-family: MathJax_Main;">Δ</span><span class="msubsup" id="MathJax-Span-192"><span style="display: inline-block; position: relative; width: 1.066em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-193" style="font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.104em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; top: -3.845em; left: 0.458em;"><span class="texatom" id="MathJax-Span-194"><span class="mrow" id="MathJax-Span-195"><span style="display: inline-block; position: relative; width: 0.559em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-196" style="font-size: 70.7%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-197" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mo" id="MathJax-Span-198" style="font-family: MathJax_Main; padding-left: 0.256em;">=</span><span class="munderover" id="MathJax-Span-199" style="padding-left: 0.256em;"><span style="display: inline-block; position: relative; width: 2.382em; height: 0px;"><span style="position: absolute; clip: rect(3.091em, 1001.01em, 4.407em, -999.997em); top: -3.997em; left: 0em;"><span class="mo" id="MathJax-Span-200" style="font-family: MathJax_Size1; vertical-align: 0em;">∑</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(3.546em, 1000.51em, 4.154em, -999.997em); top: -4.452em; left: 1.066em;"><span class="texatom" id="MathJax-Span-201"><span class="mrow" id="MathJax-Span-202"><span style="display: inline-block; position: relative; width: 0.408em; height: 0px;"><span style="position: absolute; clip: rect(3.546em, 1000.41em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-203" style="font-size: 70.7%; font-family: MathJax_Math-italic;">n</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(3.344em, 1001.37em, 4.154em, -999.997em); top: -3.693em; left: 1.066em;"><span class="texatom" id="MathJax-Span-204"><span class="mrow" id="MathJax-Span-205"><span style="display: inline-block; position: relative; width: 1.268em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1001.22em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-206" style="font-size: 70.7%; font-family: MathJax_Math-italic;">k</span><span class="mo" id="MathJax-Span-207" style="font-size: 70.7%; font-family: MathJax_Main;">=</span><span class="mn" id="MathJax-Span-208" style="font-size: 70.7%; font-family: MathJax_Main;">1</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span class="mi" id="MathJax-Span-209" style="font-family: MathJax_Main; padding-left: 0.154em;">Δ</span><span class="msubsup" id="MathJax-Span-210"><span style="display: inline-block; position: relative; width: 1.066em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-211" style="font-family: MathJax_Math-italic;">τ<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.104em;"></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(3.344em, 1000.46em, 4.154em, -999.997em); top: -4.351em; left: 0.61em;"><span class="texatom" id="MathJax-Span-212"><span class="mrow" id="MathJax-Span-213"><span style="display: inline-block; position: relative; width: 0.357em; height: 0px;"><span style="position: absolute; clip: rect(3.344em, 1000.36em, 4.154em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-214" style="font-size: 70.7%; font-family: MathJax_Math-italic;">k</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span><span style="position: absolute; clip: rect(3.394em, 1000.61em, 4.305em, -999.997em); top: -3.693em; left: 0.458em;"><span class="texatom" id="MathJax-Span-215"><span class="mrow" id="MathJax-Span-216"><span style="display: inline-block; position: relative; width: 0.559em; height: 0px;"><span style="position: absolute; clip: rect(3.394em, 1000.51em, 4.305em, -999.997em); top: -3.997em; left: 0em;"><span class="mi" id="MathJax-Span-217" style="font-size: 70.7%; font-family: MathJax_Math-italic;">i</span><span class="mi" id="MathJax-Span-218" style="font-size: 70.7%; font-family: MathJax_Math-italic;">j</span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.002em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -1.237em; border-left: 0px solid; width: 0px; height: 2.946em;"></span></span></nobr><span class="MJX_Assistive_MathML MJX_Assistive_MathML_Block" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="left" rowspacing="4pt" columnspacing="1em"><mtr><mtd><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>ρ</mi><mo stretchy="false">)</mo><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">Δ</mi><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd><mi mathvariant="normal">Δ</mi><msub><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><munderover><mo>∑</mo><mrow class="MJX-TeXAtom-ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow class="MJX-TeXAtom-ORD"><mi>n</mi></mrow></munderover><mi mathvariant="normal">Δ</mi><msubsup><mi>τ</mi><mrow class="MJX-TeXAtom-ORD"><mi>i</mi><mi>j</mi></mrow><mrow class="MJX-TeXAtom-ORD"><mi>k</mi></mrow></msubsup></mtd></mtr></mtable></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-3">\begin{array}{l} \tau_{i j}(t+1)=(1-\rho) \tau_{i j}(t)+\Delta \tau_{i j} \\ \Delta \tau_{i j}=\sum_{k=1}^{n} \Delta \tau_{i j}^{k} \end{array}</script>\right. </span><span class="katex-html"><span class="base"><span class="strut" style="height: 2.44388em; vertical-align: -0.97194em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size3">{<!-- --></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.47194em;"><span class="" style="top: -3.63194em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mord mathdefault">ρ</span><span class="mclose">)</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">t</span><span class="mclose">)</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mord">Δ</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -2.42283em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -0.000005em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.804292em;"><span class="" style="top: -2.40029em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.2029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.29971em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">Δ</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -2.44134em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.394772em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.97194em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height: 2.44388em; vertical-align: -0.97194em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></span><br> 其中,<span class="katex--inline"><span class="katex"><span class="katex-mathml"> Δ τ i j k \Delta \tau_{i j}^{k} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.24388em; vertical-align: -0.394772em;"></span><span class="mord">Δ</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -2.44134em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.394772em;"><span class=""></span></span></span></span></span></span></span></span></span></span>表示第<span class="katex--inline"><span class="katex"><span class="katex-mathml"> k k </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69444em; vertical-align: 0em;"></span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span></span></span></span></span>只蚂蚁在节点<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span>与节点<span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span>连接路径上释放的信息素浓度;<span class="katex--inline"><span class="katex"><span class="katex-mathml"> Δ τ i j \Delta \tau_{i j} </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.969438em; vertical-align: -0.286108em;"></span><span class="mord">Δ</span><span class="mord"><span style="margin-right: 0.1132em;" class="mord mathdefault">τ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.311664em;"><span class="" style="top: -2.55em; margin-left: -0.1132em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span style="margin-right: 0.05724em;" class="mord mathdefault mtight">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span></span></span></span></span>表示所有蚂蚁在节点<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i i </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span>与节点<span class="katex--inline"><span class="katex"><span class="katex-mathml"> j j </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.85396em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05724em;" class="mord mathdefault">j</span></span></span></span></span>连接路径上释放的信息素浓度之和。</p> </li><li> <p>蚂蚁信息素更新的模型包括蚁周模型(<a href="https://so.csdn.net/so/search?q=Ant&spm=1001.2101.3001.7020" target="_blank" class="hl hl-1" data-report-click="{"spm":"1001.2101.3001.7020","dest":"https://so.csdn.net/so/search?q=Ant&spm=1001.2101.3001.7020","extra":"{\"searchword\":\"Ant\"}"}" data-tit="Ant" data-pretit="ant">Ant</a>-Cycle模型)、蚁量模型(Ant-Quantity模型)、蚁密模型(Ant-Density模型)等。</p> <p>区别:</p>
蚁周模型利用的是全局信息,即蚂蚁完成一个循环后更新所有路径上的信息素;
蚁量和蚁密模型利用的是局部信息,即蚂蚁完成一步后更新路径上的信息素。
信息素增量不同 | 信息素更新时刻不同 | 信息素更新形式不同 | |
---|---|---|---|
蚁周模型 | 信息素增量为
|
对相关参数进行初始化,如蚁群规模(蚂蚁数量)
m m </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault">m</span></span></span></span></span>、信息素重要程度因子<span class="katex--inline"><span class="katex"><span class="katex-mathml"> α \alpha </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span style="margin-right: 0.0037em;" class="mord mathdefault">α</span></span></span></span></span>、启发函数重要程度因子<span class="katex--inline"><span class="katex"><span class="katex-mathml"> β \beta </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.88888em; vertical-align: -0.19444em;"></span><span style="margin-right: 0.05278em;" class="mord mathdefault">β</span></span></span></span></span>、信息素挥发因子<span class="katex--inline"><span class="katex"><span class="katex-mathml"> ρ \rho </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="mord mathdefault">ρ</span></span></span></span></span>、信息素常数<span class="katex--inline"><span class="katex"><span class="katex-mathml"> Q Q </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.87777em; vertical-align: -0.19444em;"></span><span class="mord mathdefault">Q</span></span></span></span></span>、最大迭代次数<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i t e r m a x itermax </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault">t</span><span class="mord mathdefault">e</span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mord mathdefault">m</span><span class="mord mathdefault">a</span><span class="mord mathdefault">x</span></span></span></span></span>。</p> </li><li> <p>构建解空间,将各个蚂蚁随机地置于不同的出发点,为每只蚂蚁确定当前候选道路集</p> </li><li> <p>更新信息素计算每个蚂蚁经过路径长度<span class="katex--inline"><span class="katex"><span class="katex-mathml"> L k ( k = 1 , 2 , … , m ) L_k(k=1,2,…,m) </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord"><span class="mord mathdefault">L</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span style="margin-right: 0.03148em;" class="mord mathdefault mtight">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mopen">(</span><span style="margin-right: 0.03148em;" class="mord mathdefault">k</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord cjk_fallback">,</span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span></span>,记录当前迭代次数中的最优解(最短路径)。同时,对各个节点连接路径上信息素浓度进行更新。</p> </li><li> <p>判断是否终止若<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i t e r < i t e r m a x iter<itermax </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.69862em; vertical-align: -0.0391em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault">t</span><span class="mord mathdefault">e</span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault">t</span><span class="mord mathdefault">e</span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mord mathdefault">m</span><span class="mord mathdefault">a</span><span class="mord mathdefault">x</span></span></span></span></span>,则令<span class="katex--inline"><span class="katex"><span class="katex-mathml"> i t e r = i t e r + 1 iter=iter+1 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault">t</span><span class="mord mathdefault">e</span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.74285em; vertical-align: -0.08333em;"></span><span class="mord mathdefault">i</span><span class="mord mathdefault">t</span><span class="mord mathdefault">e</span><span style="margin-right: 0.02778em;" class="mord mathdefault">r</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 0.64444em; vertical-align: 0em;"></span><span class="mord">1</span></span></span></span></span>,清空蚂蚁经过路径的记录表,并返回步骤2;否则,终止计算,输出最优解。</p> </li></ol>
import numpy as np
import matplotlib.pyplot as plt
# 城市坐标(52个城市)
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
[1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
num = coordinates.shape[0]
distmat = np.zeros((52, 52))
for i in range(num):
for j in range(i, num):
distmat[i][j] = distmat[j][i] = np.linalg.norm(
coordinates[i] - coordinates[j])
return distmat
# #//初始化
distmat = getdistmat(coordinates)
numant = 45 ##// 蚂蚁个数
numcity = coordinates.shape[0] ##// 城市个数
alpha = 1 ##// 信息素重要程度因子
beta = 5 ##// 启发函数重要程度因子
rho = 0.1 ##// 信息素的挥发速度
Q = 1 ##//信息素释放总量
iter = 0##//循环次数
itermax = 200#//循环最大值
etatable = 1.0 / (distmat + np.diag([1e10] numcity)) #// 启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity, numcity)) #// 信息素矩阵
pathtable = np.zeros((numant, numcity)).astype(int) #// 路径记录表
distmat = getdistmat(coordinates) #// 城市的距离矩阵
lengthaver = np.zeros(itermax) #// 各代路径的平均长度
lengthbest = np.zeros(itermax) #// 各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax, numcity)) #// 各代及其之前遇到的最佳路径长度
#//核心点-循环迭代
while iter < itermax:
#// 随机产生各个蚂蚁的起点城市
if numant <= numcity:
#// 城市数比蚂蚁数多
pathtable[:, 0] = np.random.permutation(range(0, numcity))[:numant]
else:
#// 蚂蚁数比城市数多,需要补足
pathtable[:numcity, 0] = np.random.permutation(range(0, numcity))[:]
pathtable[numcity:, 0] = np.random.permutation(range(0, numcity))[
:numant - numcity]
length = np.zeros(numant) # 计算各个蚂蚁的路径距离
for i in range(numant):
visiting = pathtable[i, 0] # 当前所在的城市
unvisited = set(range(numcity)) # 未访问的城市,以集合的形式存储{}
unvisited.remove(visiting) # 删除元素;利用集合的remove方法删除存储的数据内容
for j in range(1, numcity): # 循环numcity-1次,访问剩余的numcity-1个城市
# 每次用轮盘法选择下一个要访问的城市
listunvisited = list(unvisited)
probtrans = np.zeros(len(listunvisited))
for k in range(len(listunvisited)):
probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]], alpha)
np.power(etatable[visiting][listunvisited[k]], beta)
cumsumprobtrans = (probtrans / sum(probtrans)).cumsum()
cumsumprobtrans -= np.random.rand()
k = listunvisited[(np.where(cumsumprobtrans > 0)[0])[0]]
# 元素的提取(也就是下一轮选的城市)
pathtable[i, j] = k # 添加到路径表中(也就是蚂蚁走过的路径)
unvisited.remove(k) # 然后在为访问城市set中remove()删除掉该城市
length[i] += distmat[visiting][k]
visiting = k
# 蚂蚁的路径距离包括最后一个城市和第一个城市的距离
length[i] += distmat[visiting][pathtable[i, 0]]
# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
lengthaver[iter] = length.mean()
if iter 0:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
else:
if length.min() > lengthbest[iter - 1]:
lengthbest[iter] = lengthbest[iter - 1]
pathbest[iter] = pathbest[iter - 1].copy()
else:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
# 更新信息素
changepheromonetable = np.zeros((numcity, numcity))
for i in range(numant):
for j in range(numcity - 1):
changepheromonetable[pathtable[i, j]][pathtable[i, j + 1]] += Q / distmat[pathtable[i, j]][
pathtable[i, j + 1]] # 计算信息素增量
changepheromonetable[pathtable[i, j + 1]][pathtable[i, 0]] += Q / distmat[pathtable[i, j + 1]][pathtable[i, 0]]
pheromonetable = (1 - rho) * pheromonetable +
changepheromonetable # 计算信息素公式
if iter%300:
print(“iter(迭代次数):”, iter)
iter += 1 # 迭代次数指示器+1
# 做出平均路径长度和最优路径长度
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
axes[0].plot(lengthaver, ‘k’, marker=u’‘)
axes[0].set_title(‘Average Length’)
axes[0].set_xlabel(u’iteration’)
axes[1].plot(lengthbest, ‘k’, marker=u’‘)
axes[1].set_title(‘Best Length’)
axes[1].set_xlabel(u’iteration’)
fig.savefig(‘average_best.png’, dpi=500, bbox_inches=‘tight’)
plt.show()
# 作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:, 0], coordinates[:, 1], ‘r.’, marker=u’
⋅
\cdot
⋅’)
plt.xlim([-100, 2000])
plt.ylim([-100, 1500])
for i in range(numcity - 1):
m = int(bestpath[i])
n = int(bestpath[i + 1])
plt.plot([coordinates[m][0], coordinates[n][0]], [
coordinates[m][1], coordinates[n][1]], ‘k’)
plt.plot([coordinates[int(bestpath[0])][0], coordinates[int(n)][0]],
[coordinates[int(bestpath[0])][1], coordinates[int(n)][1]], ‘b’)
ax = plt.gca()
ax.set_title(“Best Path”)
ax.set_xlabel(‘X axis’)
ax.set_ylabel(‘Y_axis’)
plt.savefig(‘best path.png’, dpi=500, bbox_inches=‘tight’)
plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。