当前位置:   article > 正文

LLMs:Chinese-LLaMA-Alpaca的简介(扩充中文词表+增量预训练+指令精调)、安装、案例实战应用之详细攻略

chinese-llama-alpaca

LLMs:Chinese-LLaMA-Alpaca的简介(扩充中文词表+增量预训练+指令精调)、安装、案例实战应用之详细攻略

导读:2023年4月17日,哈工大讯飞联合实验室,本项目开源了中文LLaMA模型和指令精调的Alpaca大模型,以进一步促进大模型在中文NLP社区的开放研究。Chinese-LLaMA在原版LLaMA的基础上进行了三步走=扩充中文词表+增量预训练+指令精调扩充中文词表并使用了大规模中文语料数据进行增量预训练(因为采用了LoRA技巧,其本质还是高效参数微调),更好地理解新的语义和语境,进一步提升了中文基础语义理解能力。然后,Chinese-Alpaca模型进一步使用了中文指令数据进行指令精调(依旧采用了LoRA技巧),显著提升了模型对指令的理解和执行能力。
>>LoRA权重无法单独使用:理解为原LLaMA模型上的一个补丁,即需要合并原版LLaMA模型才能使用
>>针对原版LLaMA模型扩充了中文词表,提升中文编解码效率
>>开源了使用中文文本数据预训练的Chinese-LLaMA以及经过指令精调Chinese-Alpaca
>>开源了预训练脚本、指令精调脚本,用户可根据需要进一步训练模型;
>>快速使用笔记本电脑(个人PC)的CPU/GPU本地量化和部署体验大模型;

排疑:可以不进行增量预训练而直接采用指令微调吗?
如果没有进行增量预训练,模型可能无法充分利用新的中文词表,并可能在生成和理解中遇到困难。不进行增量预训练而直接使用指令微调,可能会限制模型在新的中文词表上的性能和适应性。因此,建议在进行指令微调之前,先进行适当的增量预训练,以提高模型的性能和适应性

目录

相关文章

论文相关

LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca-4月17日版》翻译与解读

LLMs:《Efficient And Effective Text Encoding For Chinese Llama And Alpaca—6月15日版本》翻译与解读

LLMs之LLaMA2:LLaMA2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途)之详细攻略

实战应用相关

LLMs:Chinese-LLaMA-Alpaca的简介(扩充中文词表+增量预训练+指令精调)、安装、案例实战应用之详细攻略

LLMs之Chinese-LLaMA-Alpaca:LLaMA汉化版项目详细源码解读多个py文件-基于Ng单机单卡实现定义数据集(生成指令数据)→数据预处理(token分词/合并权重)→增量预训练(本质是高效参数微调,LoRA的参数/LLaMA的参数)→指令微调LoRA权重(继续训练/全新训练)→模型推理(CLI、GUI【webui/LLaMACha/LangChain】)

LLMs之Chinese-LLaMA-Alpaca:基于单机CPU+Windows系统实现中文LLaMA算法进行模型部署(llama.cpp)+模型推理全流程步骤【安装环境+创建环境并安装依赖+原版LLaMA转HF格式+合并llama_hf和chinese-alpaca-lora-7b→下载llama.cpp进行模型的量化(CMake编译+生成量化版本模型)→部署f16/q4_0+测试效果】的图文教程(非常详细)

LLMs:Chinese-LLaMA-Alpaca-2(基于deepspeed框架)的简介、安装、案例实战应用之详细攻略

LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_pt_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的checkpoint+加载预训练模型和tokenizer)→数据预处理(处理【标记化+分块】+切分txt数据集)→优化模型配置(量化模块+匹配模型vocabulary大小与tokenizer+初始化PEFT模型【LoRA】+梯度累积checkpointing等)→模型训练(继续训练+评估指标+自动保存中间训练结果)/模型评估(+PPL指标)

LLMs之Chinese-LLaMA-Alpaca-2:源码解读(run_clm_sft_with_peft.py文件)—模型训练前置工作(参数解析+配置日志)→模型初始化(检测是否存在训练过的checkpoint+加载预训练模型和tokenizer)→数据预处理(监督式任务的数据收集器+指令数据集【json格式】)→优化模型配置(量化模块+匹配模型vocabulary大小与tokenizer+初始化PEFT模型【LoRA】+梯度累积checkpointing等)→模型训练(继续训练+评估指标+自动保存中间训练结果)/模型评估(+PPL指标)

Chinese-LLaMA-Alpaca的简介

1、主要内容

2、版本更新内容公告

3、系统效果:介绍了部分场景和任务下的使用体验效果

生成效果评测

客观效果评测

4、下图展示了本项目以及二期项目推出的所有大模型之间的关系

5、下面是中文LLaMA和Alpaca模型的基本对比以及建议使用场景(包括但不限于),更多内容见训练细节。

Chinese-LLaMA-Alpaca的的安装

1、模型下载:中文LLaMA、Alpaca大模型下载地址:LoRA权重无法单独使用(理解为原LLaMA模型上的一个补丁)+需要合并原版LLaMA模型才能使用

T1、直接从网盘下载

推荐模型下载

其他模型下载

T2、在transformers平台下载,

推荐阅读
相关标签