赞
踩
网址:
https://hub.tensorflow.google.cn/
https://tfhub.dev/
可以搜索,下载模型
安装包 pip install tensorflow-hub
import tensorflow_hub as hub
hub_url = 'https://hub.tensorflow.google.cn/google/magenta/arbitrary-image-stylization-v1-256/2'
hub_model = hub.load(hub_url) # 加载模型
outputs = hub_model(inputs) # 调用模型
import tensorflow_hub as hub import matplotlib.pyplot as plt import numpy as np import tensorflow as tf # 归一化,resize def load_image_local(img_path, img_size=(256, 256)): # png 4 通道转 jpg 3通道 if 'png' in img_path: img = Image.open(img_path) img = img.convert('RGB') img.save("temp.jpg") img = plt.imread("temp.jpg").astype(np.float32)[np.newaxis, :, :, :] else: # 添加一个 batch_size 轴 img = plt.imread(img_path).astype(np.float32)[np.newaxis, :, :, :] if img.max() > 1.0: img = img / 255. img = tf.image.resize(img, img_size, preserve_aspect_ratio=True) return img # 绘制图片 def show_image(img, title, save=False, fig_dpi=300): plt.imshow(img, aspect='equal') plt.axis('off') plt.show() if save: plt.imsave(title + '.jpg', img.numpy()) # 图片路径 content_image_path = "pic1.jpg" style_image_path = "pic2.jpg" # 处理图片 content_image = load_image_local(content_image_path) style_image = load_image_local(style_image_path) # 展示图片 show_image(content_image[0], "Content Image") show_image(style_image[0], "Style Image") # 加载模型 hub_url = 'https://hub.tensorflow.google.cn/google/magenta/arbitrary-image-stylization-v1-256/2' hub_model = hub.load(hub_url) # 调用模型 outputs = hub_model(tf.constant(content_image), tf.constant(style_image)) stylized_image = outputs[0] # 取出第一个样本预测值 [ :, :, 3] # 展示预测图片 show_image(stylized_image[0], "Stylized Image", True)
内容图片:
风格图片:
转换后的图片:
https://hub.tensorflow.google.cn/google/imagenet/inception_v3/feature_vector/4
hub.KerasLayer(url)
封装一个layer到模型当中,可以设置是否 finetunenum_classes = 10
model = tf.keras.Sequential([
hub.KerasLayer("https://hub.tensorflow.google.cn/google/imagenet/inception_v3/feature_vector/4",
trainable=False), # 可以设为True,微调
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.build([None, 299, 299, 3]) # Batch input shape
model.summary()
模型结构
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
keras_layer (KerasLayer) (None, 2048) 21802784
_________________________________________________________________
dense (Dense) (None, 10) 20490
=================================================================
Total params: 21,823,274
Trainable params: 20,490
Non-trainable params: 21,802,784
_________________________________________________________________
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。