赞
踩
迎关注我的头条号:Wooola,10 年 Java 软件开发及架构设计经验,专注于 Java、Go 语言、微服务架构,致力于每天分享原创文章、快乐编码和开源技术。
在一个高并发系统中对流量的把控是非常重要的,当巨大的流量直接请求到我们的服务器上没多久就可能造成接口不可用,不处理的话甚至会造成整个应用不可用。
那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的。本篇文章将会介绍一下常用的限流算法以及他们各自的特点。
算法介绍
计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置counter,具体算法的示意图如下:
具体的伪代码如下:
public class CounterDemo { public long timeStamp = getNowTime(); public int reqCount = 0; public final int limit = 100; // 时间窗口内最大请求数 public final long interval = 60000; // 时间窗口ms public boolean grant() { long now = getNowTime(); if (now < timeStamp + interval) { // 在时间窗口内 reqCount++; // 判断当前时间窗口内是否超过最大请求控制数 return reqCount <= limit; } else { timeStamp = now; // 超时后重置 reqCount = 1; return true; } } private static Long getNowTime(){ return System.currentTimeMillis(); }}
这个算法虽然简单,但是有一个十分致命的问题,那就是临界问题,我们看下图:
从上图中我们可以看到,假设有一个恶意用户,他在0:59时,瞬间发送了100个请求,并且1:00又瞬间发送了100个请求,那么其实这个用户在1秒里面,瞬间发送了200个请求。我们刚才规定的是1分钟最多100个请求,也就是每秒钟最多1.7个请求,用户通过在时间窗口的重置节点处突发请求,可以瞬间超过我们的速率限制。用户有可能通过算法的这个漏洞,瞬间压垮我们的应用。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。