当前位置:   article > 正文

AI 绘画Stable Diffusion 研究(七) 一文读懂 Stable Diffusion 工作原理

AI 绘画Stable Diffusion 研究(七) 一文读懂 Stable Diffusion 工作原理

大家好,我是风雨无阻。


本文适合人群:

  • 想要了解AI绘图基本原理的朋友。

  • 对Stable Diffusion AI绘图感兴趣的朋友。


本期内容:

  • Stable Diffusion 能做什么

  • 什么是扩散模型

  • 扩散模型实现原理

  • Stable Diffusion 潜扩散模型

  • Stable Diffusion文本如何影响图片生成

  • Stable Diffusion Cross-attention 技术

  • Stable Diffusion noise schedule 技术

  • Stable Diffusion文生图底层运行演示


一、 Stable Diffusion能做什么


通过前面几篇文章关于 Stable Diffusion 整合包的安装、ControlNet插件的介绍使、sd模型的安装和使用以及文生图功能的介绍后,相信看过的朋友应该都清楚的知道 Stable Diffusion 是做什么的吧?


对于新朋友,想详细了解的话,请前往:

AI 绘画Stable Diffusion 研究(一)sd整合包v4.2 版本安装说明
AI 绘画Stable Diffusion 研究(二)sd模型ControlNet1.1 介绍与安装
AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解
AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)
AI 绘画Stable Diffusion 研究(五)sd文生图功能详解(下)
AI 绘画Stable Diffusion 研究(六)sd提示词插件


这里再用最直白的话说一下:SD它是一个text-to-image模型 ,通过给定的 text prompt(文本提示词),可生成一张匹配文本的图片。


二、什么是扩散模型


大家都经常听到有人说,Stable Diffusion是一种潜在扩散模型(Diffusion Models)。

那我们先弄明白什么是扩散模型?

为什么叫扩散模型呢?因为它的数学公式看起来非常像物理上的扩散现象。


1、前向扩散

假如我们训练一个模型如下:

在这里插入图片描述


正如上图所示,是一个前向扩散的过程,它是在训练图像上逐渐添加噪声,最后变成完全随机噪声图,并最终无法辨认噪点图对应的初始图片。


这个过程就像是一滴墨水滴在一杯清水里,会慢慢扩散最终均匀分布在清水里一样,且无法判断它最初是从水杯的中心滴入,还是从边缘滴入,扩散这个名字就是这么来的。


2、反向扩散


反向扩散的思想是:输入一张噪点图,反向扩散(Reverse Diffusion),让上述过程获得逆向从随机噪声图生成清晰图像的过程。


从反向扩散的角度来说,我们需要知道有多少“噪点”加入到了某张图片里。


那么要知道答案的方式便是:训练一个神经网络来预测添加的噪点,这在SD里称为噪点预测器(Noise Predicator),其本质是一个U-Net模型。


训练流程为:

(1)、选择一张训练图(例如一张猫的图片)

(2)、生成随机的噪点图

(3)、给这张图继续增加多轮噪点

(4)、训练Noise Predicator,预测加入了多少噪点,通过神经网络训练权重,并展示其正确答案。


在这里插入图片描述


反向扩散训练的重点下图中的噪声预测器(Noise Predicator),它可以通过训练得出每次需要减掉的噪声,每次需要减多少噪声是预测出来的,从而实现还原清晰图片的目的。


三、扩散模型实现原理


扩散模型(Diffusion Models)的成功,其实并非横空出世,突然出现在人们的视野中。其实早在2015年就已有人提出了类似的想法,最终在2020年提出了扩散模型的生成技术。


以下是扩散模型推导公式:

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


更详细的原理:

参考:扩散模型详解原理+代码


通过前面的介绍,我们大概明白了,什么是扩散模型,但这并不是 Stable Diffusion的工作原理。

这是因为:上述扩散过程是在图片空间里完成的,无论是模型训练,还是生成图片的过程,都是需要海量的算力支持和内存需求。


想象一下:一张512 x 512的图片(包含3个颜色通道:红、绿、蓝),它的空间是786432维,也就是说我们要为一张图片指定这么多的值。因此,基本无法在单个GPU上运行。


Stable Diffusion就是降低算力和内存需求的一个解决方案。它让Stable Diffusion在消费级GPU上运行成为了可能。


四、Stable Diffusion 潜扩散模型

Stable Diffusion 它是一个Latent Diffusion Model(潜扩散模型)。其方式是将图片压缩到一个“潜空间”(Latent Space)中,而不是在高维的图片空间里工作。潜空间比图片空间小了48倍,所以它可以节省大量计算,继而运行速度更快。


扩散过程会分成很多步循环,而每一步的过程如下图所示,将文本描述、隐变量、步数等数值传入UNet,生成新的隐变量,而这个过程会涉及一些模型。

在这里插入图片描述


在最后一步循环,将隐特征经由 Variational Autoencoder(VAE)解码成图像。

在这里插入图片描述


这个过程的核心思想就是:压缩图像,它通过变分自编码器 Variational Autoencoder(VAE)模型,把图像压缩到极致,我们把此类压缩方式称作降维,这种降维级别的压缩不丢失重要信息。


经过压缩后,图像被称作低维潜在(Latent)“图像”,作为U-net的输入,去潜空间(Latent Space)里一步一步降噪后,完成反向扩散的低维“图片”还得通过VAE的解码器,把图像从潜空间转换回像素空间(Pixel Space)。


VAE包含2部分:Encoder与Decoder。

  • Encoder将一张图片压缩到“潜空间”里的一个低维空间表示

  • Decoder从“潜空间”里的表示恢复为一张图片

在这里插入图片描述


下列代码演示了VAE模型的使用方法,其中load_vae为根据配置init_config去初始化模型,然后从预训练模型model.ckpt中读取参数,预训练模型的first_stage_model即指代VAE模型。


from ldm.models.autoencoder import AutoencoderKL
#VAE模型
def load_vae():
    #初始化模型
    init_config = {
        "embed_dim": 4,
        "monitor": "val/rec_loss",
        "ddconfig":{
          "double_z": True,
          "z_channels": 4,
          "resolution": 256,
          "in_channels": 3,
          "out_ch": 3,
          "ch": 128,
          "ch_mult":[1,2,4,4],
          "num_res_blocks": 2,
          "attn_resolutions": [],
          "dropout": 0.0,
        },
        "lossconfig":{
          "target": "torch.nn.Identity"
        }
    }
    vae = AutoencoderKL(**init_config)
    #加载预训练参数
    pl_sd = torch.load("model.ckpt", map_location="cpu")
    sd = pl_sd["state_dict"]
    model_dict = vae.state_dict()
    for k, v in model_dict.items():
        model_dict[k] = sd["first_stage_model."+k]
    vae.load_state_dict(model_dict, strict=False)

    vae.eval()
    return vae

#测试vae模型
def test_vae():
    vae = load_vae()
    img = load_image("girl_and_horse.png")  #(1,3,512,512)   
    latent = vae.encode(img).sample()       #(1,4,64,64)
    samples = vae.decode(latent)            #(1,3,512,512)
    save_image(samples,"vae.png")

test_vae()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

五、Stable Diffusion 文本如何影响图片生成


在 Stable Diffusion 模型中,prompt 是通过引导向量(guidance vector)来控制 U-Net 的。具体来说,prompt 会被编码成一个文本嵌入向量(text embeddings),然后与其他输入一起传递给 U-Net。

通过这种方式,prompt 能够影响 U-Net 的输出,从而在生成过程中引导模型产生符合预期的结果,即通过 prompt 产生我们想要的图


在Stable Diffusion模型限制prompt在75个单词。


下图是文本提示词(text prompt)如何处理并输入到Noise Predictor的流程:


在这里插入图片描述


根据上图,我们可以看到这个流程:

首先,Tokenizer(分词器)将每个输入的单词转为一个数字,我们称为token。

然后,每个token转为一个768维的向量,称为词嵌入(embedding)。

最后,由Text Transformer处理词嵌入,并可以被Noise predictor进行消费。


1、分词器 (Tokenizer)

人类可以读懂单词,但计算机只能读懂数字。所以这也是为什么文本提示词首先要转为单词。

文本提示词(text prompt)首先由一个CLIP tokenizer做分词。

CLIP是一个深度学习模型,由Open AI开发,用于为任何图片生成文本描述。


以下是CLIP具体的实例

展示了如何将文本“苹果”通过CLIP技术转化为能输入到神经网络中训练的tokens数据。

这里使用Python和OpenAI库来实现。


(1)、安装依赖库

pip install torch openai
  • 1

(2)、导入相关库

import torch import openai
  • 1

(3)、加载CLIP模型

model, preprocess = openai.clip.load("ViT-B/32")
  • 1

(4)、准备输入文本

text_description = "苹果"
  • 1

(5)、将文本转换为tokens

使用CLIP模型的tokenize方法将文本转换为tokens

text_tokens = openai.clip.tokenize(text_description)
  • 1

这里,text_tokens是一个PyTorch张量,形状为(1, N),其中N是文本描述中的token数量。

在这个例子中,N=3,因为"苹果"被分成了3个tokens。


(6)、 查看tokens

print(f"Tokens: {text_tokens}")
  • 1

输出结果可能类似于:

Tokens: tensor([[49406, 3782, 49407]])
  • 1

这里,49406表示开始符号(start-of-sentence),3782表示“苹果”,49407表示结束符号(end-of-sentence)。

通过以上步骤,我们将文本“苹果”转换为了tokens。


PS:

  • Stable Diffusion v1使用了CLIP模型的tokenizer

  • Tokenizer只能将其在训练过程中见到过的单词进行分词

    例如:假设CLIP模型里有“dream”与“beach”单词,但是没有“dreambeach”单词。

    Tokenizer会将“dreambeach”分成2个单词“dream”与“beach”。

  • 1个单词并非代表1个token,而是有可能进一步进行拆分

  • 空格也是token的一部分

    例如:短语 “dream beach” 产生了两个token “dream” 和 “[space]beach”。

    这些标记与 “dreambeach” 产生的标记不同,后者是 “dream” 和 “beach”(beach 前没有空格)。


2、词嵌入(Embedding)


(1)、为什么需要词嵌入(Embedding)?

因为有些单词相互之间是非常相似,我们希望利用到这些语义信息。


例如:

man、gentleman、guy的词嵌入是非常相近的,因此它们可以相互替换。

Monet、Manet以及Degas都以印象派的风格绘画,但是方式各不相同。

这些名字看起来是非常相似,但是在词嵌入(Embedding)里是不一样的。


(2)、词嵌入(Embedding) 是如何工作的?


Embedding 将输入的tokens转换为一个连续的向量来表示,这个向量可以捕捉文本中的语义信息。在我们的例子中,"苹果"的tokens经过CLIP模型的encode_text方法后,会得到一个特征向量。


这个特征向量是一个高维空间中的点,通常具有固定的维度(在CLIP模型中,维度为512)。请注意,由于模型权重和随机性的原因,每次运行时生成的特征向量可能略有不同。以下是一个示例输出:


print(f"Text features: {text_features}")
  • 1

输出结果可能类似于:

Text features: tensor([[-0.0123,  0.0345, -0.0678, ...,  0.0219, -0.0456,  0.0789]])
  • 1

这里,text_features是一个形状为(1, 512)的PyTorch张量,其中包含了“苹果”这个词的向量表示。神经网络可以利用这个向量表示进行训练和预测任务。


Stable diffusion v1使用Open AI的ViT-L/14模型,词嵌入为768维的向量。


3、文本转换器(text transformer)


(1)、为什么需要text transformer


既然通过embedding后可以直接输入到模型中进行训练,为何在stable diffusion中还需要将embedding通过text transformer转换后再作为模型的输入呢?


这是因为Stable Diffusion模型是一个图像生成模型,它需要理解输入文本的语义信息以生成与之相关的图像。直接使用基本的文本embedding可能无法充分捕捉到文本中的复杂语义关系。通过使用text transformer,可以获得一个更丰富、更具表现力的文本表示,这有助于提高生成图像的质量和与输入文本的相关性。


使用text transformer 在捕捉文本语义信息时,能够考虑到更多上下文关系和抽象概念

这个转换器就像是一个通用的条件(conditioning)适配器。


(2)、text transformer转换示例


下面以"苹果"为例进行说明。

假设我们已经获得了"苹果"的基本embedding(一个形状为(1, 512)的PyTorch张量):

text_features = tensor([[-0.0123,  0.0345, -0.0678, ...,  0.0219, -0.0456,  0.0789]])
  • 1

接下来,我们将这个张量输入到text transformer中:

transformed_text_features = text_transformer(text_features)
  • 1

经过text transformer处理后,我们可能会得到一个新的张量,如:

print(f"Transformed text features: {transformed_text_features}")
  • 1

输出结果可能类似于:

Transformed text features: tensor([[ 0.0234, -0.0567,  0.0890, ..., -0.0321,  0.0672, -0.0813]])
  • 1

这个新的张量(形状仍为(1, 512))包含了更丰富的语义信息,例如上下文关系和抽象概念。

这有助于Stable Diffusion模型更好地理解输入文本,并生成与之相关的图像。


请注意:

由于模型权重和随机性的原因,每次运行时生成的特征向量可能略有不同。

此外,具体的变化过程取决于所使用的text transformer结构和参数。


六、Stable Diffusion Cross-attention技术


Cross-attention 是通过提示词产生图片的核心技术。

文本转换器的输出,会被noise predictor在U-Net中使用到多次。

U-Net以一个叫做cross-attention机制的方式来使用它,cross-attention机制允许模型在不同的特征层次上关注相关的区域,从而提高生成结果的质量,这即是prompt适配图片的地方。


下面代码是stable diffusion所使用的transformers块,实现了cross-attention:

class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

        self.proj_in = nn.Conv2d(in_channels,
                                 inner_dim,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim,
                                              in_channels,
                                              kernel_size=1,
                                              stride=1,
                                              padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c')
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
        x = self.proj_out(x)
        return x + x_in
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

七、Stable Diffusion noise schedule 技术

1、什么是 noise schedule ?

噪声通过多次U-Net的处理,最终会输出我们想要的图片。

在这多次处理中,每一次的降噪的幅度是不同的,所以我们就要通过schedulers来控制每次降噪的幅度(幅度一般是递减的)。这个技术就叫做 noise schedule

如图:


在这里插入图片描述


那么为什么要使用 noise schedule 技术呢?


在 Stable Diffusion 这种生成模型中,U-Net 是一个核心组件,用于从噪声图像中逐步恢复出原始图像。在多次迭代过程中,降噪幅度逐渐减小的原因是为了更精细地恢复图像的细节和结构。


Stable Diffusion 的过程可以看作是一个逆向扩散过程,它从一个高度噪声的图像开始,然后通过多个步骤逐渐去除噪声以重建原始图像。在这个过程中,U-Net 被用来预测每一步的降噪操作。


在前几轮迭代中,图像中的噪声较大,因此需要较大的降噪幅度来消除这些噪声。随着迭代次数的增加,图像中的噪声逐渐减小,因此降噪幅度也应相应减小。这样做的目的是避免过度平滑或损坏已经恢复的图像细节。


通过逐渐减小降噪幅度,U-Net 可以更好地控制去噪过程,使其在保留图像细节的同时有效地去除噪声。这有助于生成更清晰、更真实的图像。


这里举一个文生图的代码,用于说明noise schedule技术:

def txt2img():
    #unet
    unet = load_unet()
    #调度器
    scheduler = lms_scheduler()
    scheduler.set_timesteps(100)
    #文本编码
    prompts = ["a photograph of an astronaut riding a horse"]
    text_embeddings = prompts_embedding(prompts)
    text_embeddings = text_embeddings.cuda()     #(1, 77, 768)
    uncond_prompts = [""]
    uncond_embeddings = prompts_embedding(uncond_prompts)
    uncond_embeddings = uncond_embeddings.cuda() #(1, 77, 768)
    #初始隐变量
    latents = torch.randn( (1, 4, 64, 64))  #(1, 4, 64, 64)
    latents = latents * scheduler.sigmas[0]    #sigmas[0]=157.40723
    latents = latents.cuda()
    #循环步骤
    for i, t in enumerate(scheduler.timesteps):  #timesteps=[999.  988.90909091 978.81818182 ...100个
        latent_model_input = latents  #(1, 4, 64, 64)  
        sigma = scheduler.sigmas[i]
        latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
        timestamp = torch.tensor([t]).cuda()

        with torch.no_grad():  
            noise_pred_text = unet(latent_model_input, timestamp, text_embeddings)
            noise_pred_uncond = unet(latent_model_input, timestamp, uncond_embeddings)
            guidance_scale = 7.5 
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            latents = scheduler.step(noise_pred, i, latents)

    vae = load_vae()
    latents = 1 / 0.18215 * latents
    image = vae.decode(latents.cpu())  #(1, 3, 512, 512)
    save_image(image,"txt2img.png")

txt2img()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

八、Stable Diffusion 文生图底层运行演示


在文本生成图的场景下,我们给SD模型输入一组文本提示词,它可以返回一张图片。


第一步、 Stable Diffusion在潜空间里生成一个随机张量。

我们通过设置随机种子seed来控制这个张量的生成。如果我们设置这个随机种子为一个特定的值,则会得到相同的随机张量。这就是我们在潜空间里的图片。但是当前还全是噪点。

在这里插入图片描述


第二步、 Noise predictor U-Net将潜噪点图已经文本提示词作为输入,并预测噪点

此噪点同样也在潜空间内(一个4 x 64 x 64的张量)

在这里插入图片描述


第三步、从潜图片中抽取潜噪点,并生成了新的潜图片

在这里插入图片描述


第二步 与 第三步重复特定采样次数,例如20次。


第四步、VAE 的decoder将潜图片转回像素空间

这便是我们通过SD模型最终得到的图片。

在这里插入图片描述


参考资料:

1. How does Stable Diffusion work?

2. stable-diffusion

3.扩散模型详解原理+代码

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/658226
推荐阅读
相关标签
  

闽ICP备14008679号