赞
踩
李沫《动手学深度学习》课程学习
具体代码保存在自己的内存中,学完之后会考虑将资源全部上传,写文档的目的是保留一些自己认为重要的内容、调试的过程、练习的内容,尽力一周一章的学习进度。
目录
1.1.3 目标函数(objective function)
1、数据由样本(example、sample)组成,大部分时候遵循独立同分布(independently and identically distributed, i.i.d.).
2、样本有时也叫做数据点(data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。 机器学习模型会根据这些属性进行预测。
3、要预测的是一个特殊的属性,它被称为标签(label,或目标(target))
4、当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)。
5、数据集分成两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模型。
1、在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,我们称之为目标函数(objective function)。
2、通常定义一个目标函数,并希望优化它到最低点。 因为越低越好,所以这些函数有时被称为损失函数(loss function,或cost function)。
3、通常,损失函数是根据模型参数定义的,并取决于数据集。 在一个数据集上,我们通过最小化总损失来学习模型参数的最佳值。
4、当一个模型在训练集上表现良好,但不能推广到测试集时,我们说这个模型是“过拟合”(overfitting)的。
1、一旦我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,我们接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。
2、深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。
3、 简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果你仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。
监督学习可以理解为样本的组成是 特征+标签
当标签取任意数值时,我们称之为回归问题。 我们的目标是生成一个模型,它的预测非常接近实际标签值。
判断回归问题的一个很好的经验法则是,任何有关“多少”的问题很可能就是回归问题。比如:
这个手术需要多少小时?
在未来六小时,这个镇会有多少降雨量?
在分类问题中,我们希望模型能够预测样本属于哪个类别(category,正式称为类(class))
分类问题可以分为二元分类、多元分类、层次分类
学习预测不相互排斥的类别的问题称为多标签分类(multi-label classification)。 举个例子,人们在技术博客上贴的标签,比如“机器学习”、“技术”、“小工具”、“编程语言”、“Linux”、“云计算”、“AWS”。 一篇典型的文章可能会用5-10个标签,因为这些概念是相互关联的。 关于“云计算”的帖子可能会提到“AWS”,而关于“机器学习”的帖子也可能涉及“编程语言”。
即使结果集是相同的,集内的顺序有时却很重要。
该问题的一种可能的解决方案:首先为集合中的每个元素分配相应的相关性分数,然后检索评级最高的元素。
序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列。
——数据中不含有“目标”的机器学习问题
聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?
主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” − “意大利” + “法国” = “巴黎”。
因果关系(causality)和概率图模型(probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?
生成对抗性网络(generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试。
机器学习研究计算机系统如何利用经验(通常是数据)来提高特定任务的性能。它结合了统计学、数据挖掘和优化的思想。通常,它是被用作实现人工智能解决方案的一种手段。
表示学习作为机器学习的一类,其研究的重点是如何自动找到合适的数据表示方式。深度学习是通过学习多层次的转换来进行的多层次的表示学习。
深度学习不仅取代了传统机器学习的浅层模型,而且取代了劳动密集型的特征工程。
最近在深度学习方面取得的许多进展,大都是由廉价传感器和互联网规模应用所产生的大量数据,以及(通过GPU)算力的突破来触发的。
整个系统优化是获得高性能的关键环节。有效的深度学习框架的开源使得这一点的设计和实现变得非常容易。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。