当前位置:   article > 正文

【大数据面试题】005 谈一谈 Flink Watermark 水印

【大数据面试题】005 谈一谈 Flink Watermark 水印

一步一个脚印,一天一道面试题。

感觉我现在很难把水印描述的很好,但,完成比完美更重要。后续我再补充。各位如果有什么建议或补充也欢迎留言。(已更新1)

在实时处理任务时,由于网络延迟,人工异常,各种问题,数据往往会出现乱序,不按照我们的预期到达处理框架。
WaterMark 水印,就是为了一定程度的解决数据,延迟乱序问题的。

使用 WaterMark 一般有以下几个步骤:

  • 定义时间特性
    (Flink 1.12 已废弃,默认使用 事件时间)
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
  • 设置 Watermark 策略,赋值事件时间
        // 分配时间戳和水位线
        DataStream<Tuple2<Long, Integer>> withTimestampsAndWatermarks = parsedStream
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .<Tuple2<Long, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner((element, recordTimestamp) -> element.f0));
  • 1
  • 2
  • 3
  • 4
  • 5
水位线特性
  • 水位线是插入到数据流中的一个标记,可以认为是一个特殊数据。

  • 水位线主要的内容是一个时间戳,用来表示当前事件时间的进展

  • 水位线是基于数据的时间戳生成的。

  • 水位线必须**单调递增,**以确保任务的时间时间时钟一直向前推进。

  • 水位线可以设置延迟,来尽量保证正确处理乱序数据。

  • 一个水位线 Watermark (t), 表示在当前流中事件时间已经达到了时间戳 t,这代表 t 之前的所有数据都到齐了,之后不会出现在时间戳 (t) 之前的数据。出现了在 t 之前的数据就会被抛弃不处理。

话不多说,直接给个 Watermark 水印样例代码。


public class SimpleWatermarkExample {
    public static void main(String[] args) throws Exception {
        // 设置流执行环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 从 socket 文本流接收数据
        DataStream<String> input = env.addSource(new SocketTextStreamFunction("localhost", 9999, "\n", -1));

        // 解析输入的数据
        DataStream<Tuple2<Long, Integer>> parsedStream = input
                .map(new MapFunction<String, Tuple2<Long, Integer>>() {
                    @Override
                    public Tuple2<Long, Integer> map(String value) throws Exception {
                        String[] parts = value.split(",");
                        return new Tuple2<>(Long.parseLong(parts[0]), Integer.parseInt(parts[1]));
                    }
                });

        // 分配时间戳和水位线
        DataStream<Tuple2<Long, Integer>> withTimestampsAndWatermarks = parsedStream
                .assignTimestampsAndWatermarks(WatermarkStrategy
                        .<Tuple2<Long, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner((element, recordTimestamp) -> element.f0));

        // 使用窗口函数统计每10秒内的最大值
        DataStream<String> maxValues = withTimestampsAndWatermarks
                .windowAll(TumblingEventTimeWindows.of(Time.seconds(10)))
                .apply(new WindowFunction<Tuple2<Long, Integer>, String, TimeWindow>() {
                    @Override
                    public void apply(TimeWindow window, Iterable<Tuple2<Long, Integer>> values, Collector<String> out) throws Exception {
                        int maxValue = Integer.MIN_VALUE;
                        for (Tuple2<Long, Integer> value : values) {
                            maxValue = Math.max(maxValue, value.f1);
                        }
                        out.collect("Window: " + window + " Max Value: " + maxValue);
                    }
                });

        // 打印结果
        maxValues.print();

        // 执行程序
        env.execute("Simple Flink Watermark Example");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/78053
推荐阅读
  

闽ICP备14008679号