当前位置:   article > 正文

线性回归、逻辑回归大概差别_逻辑回归和一般回归分析有什么区别

逻辑回归和一般回归分析有什么区别

区别:1、逻辑回归是一种广义的线性回归分析模型;线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。2、逻辑回归常用于数据挖掘,疾病自动诊断,经济预测等领域;线性回归常运用于数学、金融、趋势线、经济学等领域。

分类和回归的区别和联系

类和回归的区别在于输出变量的类型。

定量输出称为回归,或者说是连续变量预测;
定性输出称为分类,或者说是离散变量预测。线性回归、逻辑回归大概差别

逻辑回归介绍

logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。

logistic回归是一种广义线性回归,因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y=w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p=L(w‘x+b),然后根据p与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。

2线性回归介绍

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y=w'x+e,e为误差服从均值为0的正态分布。

回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/123449?site
推荐阅读
相关标签
  

闽ICP备14008679号