赞
踩
最长公共子序列递归算法、动态规划算法比较实验
画出运行时间与n变化曲线对比图,并分析原因
1、 掌握递归算法与动态规划算法思想。
2、 编写实现最长公共子序列的递归算法及动态规划算法。
3、 比较递归算法与动态规划算法解决最长公共子序列问题不同n值所耗费的时间。
#生成一个指定长度的随机字符串
def generate_random_str(randomlength=16):
random_str = ''
base_str = 'ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789'
length = len(base_str) - 1
for i in range(randomlength):
random_str += base_str[random.randint(0, length)]
return random_str
#递归算法求最长公共子序列长度
def rec_LCS(i,j):
lena = len(a)
lenb = len(b)
if i>=lena or j>=lenb:
return 0
if a[i]==b[j]:
return 1+rec_LCS(i+1,j+1)
elif rec_LCS(i+1,j)>rec_LCS(i,j+1):
return rec_LCS(i+1,j)
else:
return rec_LCS(i,j+1)
#动态规划求最长公共子序列长度
def LCS(string1,string2):
len1 = len(string1)
len2 = len(string2)
book = [[0 for i in range(len1+1)] for j in range(len2+1)]
for i in range(1,len2+1):
for j in range(1,len1+1):
if string2[i-1] == string1[j-1]:
book[i][j] = book[i-1][j-1]+1
else:
book[i][j] = max(book[i-1][j],book[i][j-1])
return book[-1][-1]
#函数运算时间
def time_Counter(func, x, y):
time_start = time.time()
func(x,y)
time_end = time.time()
return time_end-time_start
def ShowTimes(N,time1, time2): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) plt.figure("Lab5-最长公共子序列") plt.title(u'递归与动态规划解决最长公共子序列问题所耗费的时间',FontProperties=font) plt.xlabel(u'n值',FontProperties=font) plt.ylabel(u'所需时间(s)',FontProperties=font) plt.scatter(x=N, y=time1, color='black',s=10) plt.scatter(x=N, y=time2, color='red',s=10) plt.plot(N,time1,color='black') plt.plot(N,time2,color='red') for a,b in zip(N,time1): plt.text(a, b+0.3,'%.2fs' % b) for a,b in zip(N,time2): plt.text(a, b+0.1,'%.2fs' % b,color = 'red') rec_LCS = mlines.Line2D([], [], color='black', marker='.', markersize=10, label='rec_LCS') LCS = mlines.Line2D([], [], color='red', marker='.', markersize=10, label='LCS') plt.legend(handles=[rec_LCS,LCS] plt.show()
if __name__=='__main__': N = [] time1 = [] time2 = [] for i in range(1,10,1): a = generate_random_str(i) b = generate_random_str(i) #time1.append(1) time1.append(time_Counter(rec_LCS,0,0)) time2.append(time_Counter(LCS,a,b)) N.append(i) ShowTimes(N,time1,time2) #算法测试 a = generate_random_str(10) b = generate_random_str(10) print('字符串a:',a) print('字符串b:',b) print('递归算法求得的最长公共子序列长度:',rec_LCS(0,0)) print('动态规划算法求得的最长公共子序列长度:',LCS(a,b)) print('递归实现最长公共子序列算法所耗时间:',time1) print('动态规划实现最长公共子序列算法所耗时间:',time2)
import time import random import sys sys.setrecursionlimit(1000000) from matplotlib.font_manager import FontProperties import matplotlib matplotlib.use('TkAgg') import matplotlib.lines as mlines import matplotlib.pyplot as plt #递归算法求最长公共子序列长度 def rec_LCS(i,j): lena = len(a) lenb = len(b) if i>=lena or j>=lenb: return 0 if a[i]==b[j]: return 1+rec_LCS(i+1,j+1) elif rec_LCS(i+1,j)>rec_LCS(i,j+1): return rec_LCS(i+1,j) else: return rec_LCS(i,j+1) #动态规划求最长公共子序列长度 def LCS(string1,string2): len1 = len(string1) len2 = len(string2) book = [[0 for i in range(len1+1)] for j in range(len2+1)] for i in range(1,len2+1): for j in range(1,len1+1): if string2[i-1] == string1[j-1]: book[i][j] = book[i-1][j-1]+1 else: book[i][j] = max(book[i-1][j],book[i][j-1]) return book[-1][-1] #函数运算时间 def time_Counter(func, x, y): time_start = time.time() func(x,y) time_end = time.time() return time_end-time_start #生成一个指定长度的随机字符串 def generate_random_str(randomlength=16): random_str = '' base_str = 'ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789' length = len(base_str) - 1 for i in range(randomlength): random_str += base_str[random.randint(0, length)] return random_str def ShowTimes(N,time1, time2): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) plt.figure("Lab5-最长公共子序列") plt.title(u'递归与动态规划解决最长公共子序列问题所耗费的时间',FontProperties=font) plt.xlabel(u'字符串长度',FontProperties=font) plt.ylabel(u'所需时间(s)',FontProperties=font) plt.scatter(x=N, y=time1, color='black',s=10) plt.scatter(x=N, y=time2, color='red',s=10) plt.plot(N,time1,color='black') plt.plot(N,time2,color='red') for a,b in zip(N,time1): plt.text(a, b+0.3,'%.2fs' % b) for a,b in zip(N,time2): plt.text(a, b+0.1,'%.2fs' % b,color = 'red') rec_LCS = mlines.Line2D([], [], color='black', marker='.', markersize=10, label='rec_LCS') LCS = mlines.Line2D([], [], color='red', marker='.', markersize=10, label='LCS') plt.legend(handles=[rec_LCS,LCS]) plt.show() if __name__=='__main__': N = [] time1 = [] time2 = [] for i in range(1,10,1): a = generate_random_str(i) b = generate_random_str(i) #time1.append(1) time1.append(time_Counter(rec_LCS,0,0)) time2.append(time_Counter(LCS,a,b)) N.append(i) ShowTimes(N,time1,time2) #算法测试 a = generate_random_str(10) b = generate_random_str(10) print('字符串a:',a) print('字符串b:',b) print('递归算法求得的最长公共子序列长度:',rec_LCS(0,0)) print('动态规划算法求得的最长公共子序列长度:',LCS(a,b)) print('递归实现最长公共子序列算法所耗时间:',time1) print('动态规划实现最长公共子序列算法所耗时间:',time2)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。