赞
踩
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]).sigmoid() # conv
return x[0], x[1], x[2]
import os import torch import onnx from onnxsim import simplify import onnxoptimizer import argparse from models.yolo import Detect, Model if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./weights/yolov7.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='./cfg/deploy/yolov7.yaml', help='initial weights path') #================================================================ opt = parser.parse_args() print(opt) #Save Only weights ckpt = torch.load(opt.weights, map_location=torch.device('cpu')) torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt")) #Load model without postprocessing new_model = Model(opt.cfg) new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False) new_model.eval() #save to JIT script example = torch.rand(1, 3, 640, 640) traced_script_module = torch.jit.trace(new_model, example) traced_script_module.save(opt.weights.replace(".pt", "-jit.pt")) #save to onnx f = opt.weights.replace(".pt", ".onnx") torch.onnx.export(new_model, example, f, verbose=False, opset_version=12, training=torch.onnx.TrainingMode.EVAL, do_constant_folding=True, input_names=['data'], output_names=['out0','out1','out2']) #onnxsim model_simp, check = simplify(f) assert check, "Simplified ONNX model could not be validated" onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx")) #optimize onnx passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"] optimized_model = onnxoptimizer.optimize(model_simp, passes) onnx.checker.check_model(optimized_model) onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx")) print('finished exporting onnx')
Namespace(cfg='./cfg/deploy/yolov7.yaml', weights='./weights/yolov7.pt')
finished exporting onnx
def sigmoid(x):
# return 1 / (1 + np.exp(-x))
return x
python3 test.py
即可获取推理结果后续放出代码
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。