赞
踩
yolov5-6.1源码
yolov5-gradcam源码
b站视频讲解
---修改部分
---model/yolo.py(Detect类中的forward函数)
---添加部分
---model/gradcam.py
---model/yolov5_object_detector.py
---main_gradcam.py
model/yolo.py
文件中的Detect
类中的forward
函数logits_ = []
logits = x[i][..., 5:]
logits_.append(logits.view(bs, -1, self.no - 5))
out = (torch.cat(z, 1), torch.cat(logits_, 1), x)
def forward(self, x): z = [] # inference output logits_ = [] # 修改---1 for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) logits = x[i][..., 5:] # 修改---2 y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) logits_.append(logits.view(bs, -1, self.no - 5)) # 修改---3 # return x if self.training else (torch.cat(z, 1), x) return x if self.training else (torch.cat(z, 1), torch.cat(logits_, 1), x) # 修改---4
model
文件夹中,添加yolov5_object_detector.py
文件:import numpy as np import torch from models.experimental import attempt_load from utils.general import xywh2xyxy from utils.datasets import letterbox import cv2 import time import torchvision import torch.nn as nn from utils.metrics import box_iou class YOLOV5TorchObjectDetector(nn.Module): def __init__(self, model_weight, device, img_size, names=None, mode='eval', confidence=0.45, iou_thresh=0.45, agnostic_nms=False): super(YOLOV5TorchObjectDetector, self).__init__() self.device = device self.model = None self.img_size = img_size self.mode = mode self.confidence = confidence self.iou_thresh = iou_thresh self.agnostic = agnostic_nms self.model = attempt_load(model_weight, map_location=device, inplace=False, fuse=False) self.model.requires_grad_(True) self.model.to(device) if self.mode == 'train': self.model.train() else: self.model.eval() # fetch the names if names is None: self.names = ['your dataset classname'] else: self.names = names # preventing cold start img = torch.zeros((1, 3, *self.img_size), device=device) self.model(img) @staticmethod def non_max_suppression(prediction, logits, conf_thres=0.3, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300): """Runs Non-Maximum Suppression (NMS) on inference and logits results Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] and pruned input logits (n, number-classes) """ nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] logits_output = [torch.zeros((0, nc), device=logits.device)] * logits.shape[0] # logits_output = [torch.zeros((0, 80), device=logits.device)] * logits.shape[0] for xi, (x, log_) in enumerate(zip(prediction, logits)): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence log_ = log_[xc[xi]] # Cat apriori labels if autolabelling if labels and len(labels[xi]): l = labels[xi] v = torch.zeros((len(l), nc + 5), device=x.device) v[:, :4] = l[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] log_ = log_[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] logits_output[xi] = log_[i] assert log_[i].shape[0] == x[i].shape[0] if (time.time() - t) > time_limit: print(f'WARNING: NMS time limit {time_limit}s exceeded') break # time limit exceeded return output, logits_output @staticmethod def yolo_resize(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): return letterbox(img, new_shape=new_shape, color=color, auto=auto, scaleFill=scaleFill, scaleup=scaleup) def forward(self, img): prediction, logits, _ = self.model(img, augment=False) prediction, logits = self.non_max_suppression(prediction, logits, self.confidence, self.iou_thresh, classes=None, agnostic=self.agnostic) self.boxes, self.class_names, self.classes, self.confidences = [[[] for _ in range(img.shape[0])] for _ in range(4)] for i, det in enumerate(prediction): # detections per image if len(det): for *xyxy, conf, cls in det: # 返回整数 bbox = [int(b) for b in xyxy] self.boxes[i].append(bbox) self.confidences[i].append(round(conf.item(), 2)) cls = int(cls.item()) self.classes[i].append(cls) if self.names is not None: self.class_names[i].append(self.names[cls]) else: self.class_names[i].append(cls) return [self.boxes, self.classes, self.class_names, self.confidences], logits def preprocessing(self, img): if len(img.shape) != 4: img = np.expand_dims(img, axis=0) im0 = img.astype(np.uint8) img = np.array([self.yolo_resize(im, new_shape=self.img_size)[0] for im in im0]) img = img.transpose((0, 3, 1, 2)) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img / 255.0 return img
model
文件夹中,添加gradcam.py
文件:import time import torch import torch.nn.functional as F def find_yolo_layer(model, layer_name): """Find yolov5 layer to calculate GradCAM and GradCAM++ Args: model: yolov5 model. layer_name (str): the name of layer with its hierarchical information. Return: target_layer: found layer """ hierarchy = layer_name.split('_') target_layer = model.model._modules[hierarchy[0]] for h in hierarchy[1:]: target_layer = target_layer._modules[h] return target_layer class YOLOV5GradCAM: # 初始化,得到target_layer层 def __init__(self, model, layer_name, img_size=(640, 640)): self.model = model self.gradients = dict() self.activations = dict() def backward_hook(module, grad_input, grad_output): self.gradients['value'] = grad_output[0] return None def forward_hook(module, input, output): self.activations['value'] = output return None target_layer = find_yolo_layer(self.model, layer_name) # 获取forward过程中每层的输入和输出,用于对比hook是不是正确记录 target_layer.register_forward_hook(forward_hook) target_layer.register_full_backward_hook(backward_hook) device = 'cuda' if next(self.model.model.parameters()).is_cuda else 'cpu' self.model(torch.zeros(1, 3, *img_size, device=device)) def forward(self, input_img, class_idx=True): """ Args: input_img: input image with shape of (1, 3, H, W) Return: mask: saliency map of the same spatial dimension with input logit: model output preds: The object predictions """ saliency_maps = [] b, c, h, w = input_img.size() preds, logits = self.model(input_img) for logit, cls, cls_name in zip(logits[0], preds[1][0], preds[2][0]): if class_idx: score = logit[cls] else: score = logit.max() self.model.zero_grad() tic = time.time() # 获取梯度 score.backward(retain_graph=True) print(f"[INFO] {cls_name}, model-backward took: ", round(time.time() - tic, 4), 'seconds') gradients = self.gradients['value'] activations = self.activations['value'] b, k, u, v = gradients.size() alpha = gradients.view(b, k, -1).mean(2) weights = alpha.view(b, k, 1, 1) saliency_map = (weights * activations).sum(1, keepdim=True) saliency_map = F.relu(saliency_map) saliency_map = F.interpolate(saliency_map, size=(h, w), mode='bilinear', align_corners=False) saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max() saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data saliency_maps.append(saliency_map) return saliency_maps, logits, preds def __call__(self, input_img): return self.forward(input_img) class YOLOV5GradCAMPP(YOLOV5GradCAM): def __init__(self, model, layer_name, img_size=(640, 640)): super(YOLOV5GradCAMPP, self).__init__(model, layer_name, img_size) def forward(self, input_img, class_idx=True): saliency_maps = [] b, c, h, w = input_img.size() tic = time.time() preds, logits = self.model(input_img) print("[INFO] model-forward took: ", round(time.time() - tic, 4), 'seconds') for logit, cls, cls_name in zip(logits[0], preds[1][0], preds[2][0]): if class_idx: score = logit[cls] else: score = logit.max() self.model.zero_grad() tic = time.time() # 获取梯度 score.backward(retain_graph=True) print(f"[INFO] {cls_name}, model-backward took: ", round(time.time() - tic, 4), 'seconds') gradients = self.gradients['value'] # dS/dA activations = self.activations['value'] # A b, k, u, v = gradients.size() alpha_num = gradients.pow(2) alpha_denom = gradients.pow(2).mul(2) + \ activations.mul(gradients.pow(3)).view(b, k, u * v).sum(-1, keepdim=True).view(b, k, 1, 1) # torch.where(condition, x, y) condition是条件,满足条件就返回x,不满足就返回y alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom)) alpha = alpha_num.div(alpha_denom + 1e-7) positive_gradients = F.relu(score.exp() * gradients) # ReLU(dY/dA) == ReLU(exp(S)*dS/dA)) weights = (alpha * positive_gradients).view(b, k, u * v).sum(-1).view(b, k, 1, 1) saliency_map = (weights * activations).sum(1, keepdim=True) saliency_map = F.relu(saliency_map) saliency_map = F.interpolate(saliency_map, size=(h, w), mode='bilinear', align_corners=False) saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max() saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data saliency_maps.append(saliency_map) return saliency_maps, logits, preds
main_gradcam.py
文件import os import random import time import argparse import numpy as np from models.gradcam import YOLOV5GradCAM, YOLOV5GradCAMPP from models.yolo_v5_object_detector import YOLOV5TorchObjectDetector import cv2 # 数据集类别名 names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] # class names # yolov5s网络中的三个detect层 target_layers = ['model_17_cv3_act', 'model_20_cv3_act', 'model_23_cv3_act'] # Arguments parser = argparse.ArgumentParser() parser.add_argument('--model-path', type=str, default="weights/yolov5s.pt", help='Path to the model') parser.add_argument('--img-path', type=str, default='data/images', help='input image path') parser.add_argument('--output-dir', type=str, default='outputs/', help='output dir') parser.add_argument('--img-size', type=int, default=640, help="input image size") parser.add_argument('--target-layer', type=str, default='model_17_cv3_act', help='The layer hierarchical address to which gradcam will applied,' ' the names should be separated by underline') parser.add_argument('--method', type=str, default='gradcam', help='gradcam method') parser.add_argument('--device', type=str, default='cpu', help='cuda or cpu') parser.add_argument('--no_text_box', action='store_true', help='do not show label and box on the heatmap') args = parser.parse_args() def get_res_img(bbox, mask, res_img): mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype( np.uint8) heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET) # n_heatmat = (Box.fill_outer_box(heatmap, bbox) / 255).astype(np.float32) n_heatmat = (heatmap / 255).astype(np.float32) res_img = res_img / 255 res_img = cv2.add(res_img, n_heatmat) res_img = (res_img / res_img.max()) return res_img, n_heatmat def plot_one_box(x, img, color=None, label=None, line_thickness=3): # this is a bug in cv2. It does not put box on a converted image from torch unless it's buffered and read again! cv2.imwrite('temp.jpg', (img * 255).astype(np.uint8)) img = cv2.imread('temp.jpg') # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] outside = c1[1] - t_size[1] - 3 >= 0 # label fits outside box up c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 if outside else c1[1] + t_size[1] + 3 outsize_right = c2[0] - img.shape[:2][1] > 0 # label fits outside box right c1 = c1[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c1[0], c1[1] c2 = c2[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c2[0], c2[1] cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2 if outside else c2[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) return img # 检测单个图片 def main(img_path): colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] device = args.device input_size = (args.img_size, args.img_size) # 读入图片 img = cv2.imread(img_path) # 读取图像格式:BGR print('[INFO] Loading the model') # 实例化YOLOv5模型,得到检测结果 model = YOLOV5TorchObjectDetector(args.model_path, device, img_size=input_size, names=names) # img[..., ::-1]: BGR --> RGB # (480, 640, 3) --> (1, 3, 480, 640) torch_img = model.preprocessing(img[..., ::-1]) tic = time.time() # 遍历三层检测层 for target_layer in target_layers: # 获取grad-cam方法 if args.method == 'gradcam': saliency_method = YOLOV5GradCAM(model=model, layer_name=target_layer, img_size=input_size) elif args.method == 'gradcampp': saliency_method = YOLOV5GradCAMPP(model=model, layer_name=target_layer, img_size=input_size) masks, logits, [boxes, _, class_names, conf] = saliency_method(torch_img) # 得到预测结果 result = torch_img.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy() result = result[..., ::-1] # convert to bgr # 保存设置 imgae_name = os.path.basename(img_path) # 获取图片名 save_path = f'{args.output_dir}{imgae_name[:-4]}/{args.method}' if not os.path.exists(save_path): os.makedirs(save_path) print(f'[INFO] Saving the final image at {save_path}') # 遍历每张图片中的每个目标 for i, mask in enumerate(masks): # 遍历图片中的每个目标 res_img = result.copy() # 获取目标的位置和类别信息 bbox, cls_name = boxes[0][i], class_names[0][i] label = f'{cls_name} {conf[0][i]}' # 类别+置信分数 # 获取目标的热力图 res_img, heat_map = get_res_img(bbox, mask, res_img) res_img = plot_one_box(bbox, res_img, label=label, color=colors[int(names.index(cls_name))], line_thickness=3) # 缩放到原图片大小 res_img = cv2.resize(res_img, dsize=(img.shape[:-1][::-1])) output_path = f'{save_path}/{target_layer[6:8]}_{i}.jpg' cv2.imwrite(output_path, res_img) print(f'{target_layer[6:8]}_{i}.jpg done!!') print(f'Total time : {round(time.time() - tic, 4)} s') if __name__ == '__main__': # 图片路径为文件夹 if os.path.isdir(args.img_path): img_list = os.listdir(args.img_path) print(img_list) for item in img_list: # 依次获取文件夹中的图片名,组合成图片的路径 main(os.path.join(args.img_path, item)) # 单个图片 else: main(args.img_path)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。