赞
踩
最近要研究人脸分割的任务,这里总结一些当前收集到的信息
数据集:人脸分割的data set:
LFW | 只有头发 | |
Helen | 五官分割数据,大概2330张 | |
FASSEG:FAce Smantic SEGmentation repository | 数据有点少 | |
Mut1ny head/face segmentation dataset | 16557张人脸分割数据集 | |
LaPa[京东的数据集] | 22176张人脸数据集;数据集是从300W-LP与megaface两个数据集中选取 | |
iBugMask | 1000张人脸数据集 | |
CelebAMask-HQ | 包含人脸3W张高清的人像 | |
EasyPortrait [2023] | 20000张高清图片,非常重要的人像分割数据集;同时给出了大量的预训练人像分割模型 | GitHub - hukenovs/easyportrait: EasyPortrait - Face Parsing and Portrait Segmentation Dataset |
Short-video face segmentation Dataset[2021] | 下载不到了 | |
FaceSynthetics[2022] | 微软人脸合成数据集,有10W张合成数据 |
论文集
Mask-FPAN: Semi-Supervised Face Parsing in the Wild With De-Occlusion and UV GAN | 包括了对遮挡的检测 | |
Parameter Efficient Local Implicit Image Function Network for Face Segmentation[2023] | Adobe的工作,数据在Lapa和CelebAMask-HQ目前移动端人脸解析最先进的水平了,参数2.29M,FPS 110,所有的检测结果都在85%以上 | |
On Efficient Real-Time Semantic Segmentation: A Survey[2022] | ||
Occlusion-Aware Deep Convolutional Neural Network for Face Parsing[2022] | 遮挡 | |
Detailed feature extraction network-based fine-grained face segmentation[2022] | 韩国的工作,号称能够抓取更多的细节,没有开源代码,论文看结果还不错 | |
A Masked Self-Supervised Pretraining Method for Face Parsing | 好像灌水的嫌疑很大 | |
A comprehensive survey on semantic facial attribute editing using generative adversarial networks[2022] | ||
3D Face Parsing via Surface Parameterization and 2D Semantic Segmentation Network[2022] | 3D的面部解析 | |
Decoupled Multi-task Learning with Cyclical Self-Regulation for Face Parsing[2022] | backbone:resnet-101 | https://github.com/deepinsight/insightface/tree/master/parsing/dml_csr |
RoI Tanh-polar Transformer Network for Face Parsing in the Wild[2021] | backbone:resnet-50 解决姿态变化的问题 | |
Shuffle Transformer with Feature Alignment for Video Face Parsing[2021] | Short Video Face Parsing Challenge 第一名(腾讯) 1、Net: backbone:Shuffle Transformer ,几个网络一顿串并链接,就OK了 2、loss没讲到 | |
Edge Aware Network for Face Parsing[2021] | Short Video Face Parsing Challenge 第三名(大连理工) 头部检测,face segmentation 1、头部区域检测Net: backbone: ResNet50, FPN and DCN 检测头部区域 2、face segmentation net:backbond:HRNet_W48+ upsamples:OCRNet | |
Fake it till you make it: face analysis in the wild using synthetic data alone | 微软合成数据进行人脸解析的训练,在face parsing测试的性能: 1)net:UNet, backbone: ResNet-18 2)loss 是交叉熵损失 3)Label Adaptation自适应网络,没看太懂(需要分析一下数据) | |
General Facial Representation Learning in a Visual-Linguistic Manner[2021] | 预训练网络600多M | |
AGRNet: Adaptive Graph Representation Learning and Reasoning for Face Parsing[2021] | backbone:resnet-101 | |
Edge-aware Graph Representation Learning and Reasoning for Face Parsing[2020] | ||
Towards Learning Structure via Consensus for Face Segmentation and Parsing[2020] | 看起来只是分割了面部区域和遮挡 | |
Semantic Segmentation using DeepLabv3[2020] | DeepLabV3 语义做面部语义分割 | https://medium.com/technovators/semantic-segmentation-using-deeplabv3-ce68621e139e |
Face Segmentation: A Journey From Classical to Deep Learning Paradigm, Approaches, Trends, and Directions[2020] | 2020年的综述 | |
EHANet:An Effective Hierarchical Aggregation Network for Face Parsing[2020] | 78.19%的miou | |
HLNet: A Unified Framework for Real-Time Segmentation and Facial Skin Tones Evaluation | 头发、皮肤分割和皮肤颜色估计算法 | |
A Multi-Task Framework for Facial Attributes Classification through End-to-End Face Parsing and Deep Convolutional Neural Networks[2020] | ||
Face Segmentation: A Journey From Classical to Deep Learning Paradigm, Approaches, Trends, and Directions[2020] | ||
End-to-end face parsing via interlinked convolutional neural networks[2020] | ||
A collection of deep learning frameworks ported to Keras for face analysis.[2019] | Face detection: S3FD model ported from 1adrianb/face-alignment. MTCNN model ported from davidsandberg/facenet. Face landmarks detection: 2DFAN-4, 2DFAN-2, and 2DFAN-1 models ported from 1adrianb/face-alignment. Face parsing: BiSeNet model ported from zllrunning/face-parsing.PyTorch. Eye region landmarks detection: ELG model is ported from swook/GazeML. Face verification: InceptionResNetV1 model (model name: 20180402-114759) ported from davidsandberg/facenet. LResNet100E-IR model ported from deepinsight/insightface. IR50 model ported from ZhaoJ9014/face.evoLVe.PyTorch. Gender and age estimation: MobileNet model ported from deepinsight/insightface. | |
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation | 实时的图像分割算法,同时支持了face parsing;有人在手机上查看效果,还不错,网络基于ResNet18 实测 手机上的推理性能大约是:bisenet inference elapse time: 458ms | |
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation | 语义分割 | 轻量级实时分割经典BiSeNet及其进化BiSeNet V2_轻量级分割算法_AI算法修炼营的博客-CSDN博客 | |
Face Parsing With RoI Tanh-Warping[2019] | 微软研究院和厦门大学合作的文章 | GitHub - Eskender-B/roi-tanh: Face Parsing with RoI Tanh-Warping |
Accurate Facial Image Parsing at Real-Time Speed[2019] | 使用VGG16作为骨干网络 | |
A high-efficiency framework for constructing large-scale face parsing benchmark[2019] | 京东的一个人脸分割模型,主要提到两点: 1、生成了lapa数据集 2、提到通过一个边界网络(BSPNet)增强人脸分割的精度 3、backbone:ResNet101,并使用imagenet训练的模型的预训练参数 从resnet101来看,基本就不具有实时性 4、Upsamples: spatial pyramid pooling module(SPP) | |
A New Dataset and Boundary-Attention Semantic Segmentation for Face Parsing[2019] | ||
Face parsing for mobile AR applications[2018] | 2018的工作,自己设计了一个Moblie-Hourglass网络,参考编解码的结构,并且最后加了一个Dense Blocks来对结果着色。论文基于Helen的数据,没有给出损失函数的设计以及实际分割结果的比较。网络设计异常简单,不知道实际效果如何 | |
Mobile Real-time Video Segmentation[2018] | google基于U-net,实现了video face parsing,并且达到了98%的 iou;从演示的效果上看,只分割了背景,没有对脸做分割,这两篇文章都说明U-NET能够在移动端达到实时的效果,但是人脸分割的效果如何,还是不知道的 | https://ai.googleblog.com/2018/03/mobile-real-time-video-segmentation.html |
Real-time Portrait Segmentation on Smartphones[2018] | 2018年基于U-net的portrait 分割工作,不做 face parsing | https://blog.prismalabs.ai/real-time-portrait-segmentation-on-smartphones-39c84f1b9e66 |
Deep face segmentation in extremely hard conditions[2018] | ||
Residual Encoder Decoder Network and Adaptive Prior for Face Parsing | ||
Face segmentation with CNN and CRF[2018] | 根据关键点进行人脸分割 | GitHub - criminalking/face_segmentation: Face segmentation with CNN and CRF |
On Face Segmentation, Face Swapping, and Face Perception[2018] | GitHub - YuvalNirkin/face_segmentation: Deep face segmentation in extremely hard conditions | |
Deep face segmentation in extremely hard conditions[2018] | 人脸分割,解决了遮挡的问题 | |
Real-Time Facial Segmentation and Performance Capture from RGB Input[2016] | 叫面部皮肤分割更为合适一点 1、数据集: 1)LFW和FaceWareHouse(表情数据集) 2)数据增强: perturbations、croppings、occlusion generation、hand compositings、negative samples containing no faces 2、Network,分两个网络:convolutional neural network(face region) + segmentation refinement network(encode(vgg16) + decode) 3、loss:二分类的损失函数 4、optimizer:learning rate:0.01, momentum:0.9,weight decay:0.0005;5W iterations 收敛 fune-tune negative samples:learning rate:0.001;1W收敛 | |
Fully Convolutional Networks for Semantic Segmentation | FCN 语义分割的鼻祖 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。