当前位置:   article > 正文

【机器学习】无监督学习Autoencoder和VAE

vae 机器学习

众所周知,机器学习的训练数据之所以非常昂贵,是因为需要大量人工标注数据。

autoencoder可以输入数据和输出数据维度相同,这样测试数据匹配时和训练数据的输出端直接匹配,从而实现无监督训练的效果。并且,autoencoder可以起到降维作用,虽然输入输出端维度相同,但中间层可以维度很小,从而起到降维作用,形成数据的一个浓缩表示。

可以用autoencoder做Pretraining,对难以训练的深度模型先把网络结构确定,之后再用训练数据去微调。

特定类型的autoencoder可以做生成模型生成新的东西,比如自动作诗等。

data representation:

人的记忆与数据的模式有强烈联系。比如让一位娴熟的棋手记忆某局棋局状态,会显示出超强的记忆力,但如果面对的是一局杂乱无章的棋局,所展现的记忆能力与普通人没什么差别。这体现了模式的力量,可以通过数据间关系进行记忆,效率更高。

autoencoder由于中间层有维度缩减的功效,因而强制它找到一个数据内部的pattern,从而起到高效的对训练数据的记忆作用。

如下图所示,一般中间层选取的维度很小,从而起到高效表示的作用。

如果完全做线性训练,cost function选取MSE,则这个autoencoder训练出来的效果相当于PCA的效果。

# 建立数据集
rnd.seed(4)
m = 200
w1, w2 = 0.1, 0.3
noise = 0.1
angles = rnd.rand(m) * 3 * np.pi / 2 - 0.5
data = np.empty((m, 3))
data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * rnd.randn(m) / 2
data[:, 1] = np.sin(angles) * 0.7 + noise * rnd.randn(m) / 2
data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * rnd.randn(m)

# nomalize 训练集
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(data[:100])
X_test = scaler.transform(data[100:])

# 开始建立autoencoder
import tensorflow as tf
from tensorflow.contrib.layers import fully_connected
n_inputs = 3 # 3D inputs
n_hidden = 2 # 2D codings
# 强制输出层和输入层相同
n_outputs = n_inputs
learning_rate = 0.01
X = tf.placeholder(tf.float32, shape=[None, n_inputs])
# 隐层和输入层进行全连接
hidden = fully_connected(X, n_hidden, activation_fn=None)
# 不做任何非线性处理,activation=none
outputs = fully_connected(hidden, n_outputs, activation_fn=None)
# lost function使用均方差MSE
reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE
optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(reconstruction_loss)
init = tf.global_variables_initializer()

# 运行部分
# load the dataset
X_train, X_test = [...] 
n_iterations = 1000
# the output of the hidden layer provides the codings
codings = hidden 
with tf.Session() as sess:
    init.run()
    for iteration in range(n_iterations):
        # no labels (unsupervised)
        training_op.run(feed_dict={X: X_train}) 
    codings_val = codings.eval(feed_dict={X: X_test})

中间隐层作用如下图所示,将左图中3维的图形选取一个最优截面,映射到二维平面上。

stacked autoencoder

做多个隐层,并且输入到输出形成一个对称的关系,如下图所示,从输入到中间是encode,从中间到输出是一个decode的过程。

但层次加深后,训练时会有很多困难,比如如下代码中,使用l2的regularization来正则化,使用ELU来做激活函数

n_inputs = 28 * 28 # for MNIST
n_hidden1 = 300
n_hidden2 = 150 # codings
n_hidden3 = n_hidden1
n_outputs = n_inputs
learning_rate = 0.01
l2_reg = 0.001
X = tf.placeholder(tf.float32, shape=[None, n_inputs])
# arg_scope相当于对fully_connected这个函数填公共参数,如正则化统一使用l2_regularizer等,则以下4个fully_connected的缺省参数全部使用with这里写好的
with tf.contrib.framework.arg_scope(
         [fully_connected], activation_fn=tf.nn.elu,
      weights_initializer=tf.contrib.layers.variance_scaling_initializer(),
     weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg)): hidden1 = fully_connected(X, n_hidden1) hidden2 = fully_connected(hidden1, n_hidden2) # codings hidden3 = fully_connected(hidden2, n_hidden3) # 最后一层用none来覆盖之前缺省的参数设置 outputs = fully_connected(hidden3, n_outputs, activation_fn=None) # 由于之前使用了正则化,则之后可以直接把中间计算的loss从REGULARIZATION_LOSSES中提取出来,加入到reconstruction_loss中 reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss = tf.add_n([reconstruction_loss] + reg_losses) optimizer = tf.train.AdamOptimizer(learning_rate) training_op = optimizer.minimize(loss) init = tf.global_variables_initializer() n_epochs = 5 batch_size = 150 with tf.Session() as sess: init.run() for epoch in range(n_epochs): n_batches = mnist.train.num_examples // batch_size for iteration in range(n_batches): X_batch, y_batch = mnist.train.next_batch(batch_size) # 只提供了x值,没有标签 sess.run(training_op, feed_dict={X: X_batch})

 既然autoencoder在权重上是对称的,则权重也是可以共享的,相当于参数数量减少一半,减少overfitting的风险,提高训练效率。

常见的训练手段是逐层训练,隐层1训练出后固定权值,训练hidden2,再对称一下(hidden3与hidden1完全对应),得到最终训练结果

 或者可以定义不同的name scope,在不同的phase中训练,

 

[...] # Build the whole stacked autoencoder normally.
# In this example, the weights are not tied.
optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.name_scope("phase1"):
    phase1_outputs = tf.matmul(hidden1, weights4) + biases4
    phase1_reconstruction_loss = tf.reduce_mean(tf.square(phase1_outputs - X))
    phase1_reg_loss = regularizer(weights1) + regularizer(weights4)
    phase1_loss = phase1_reconstruction_loss + phase1_reg_loss
    phase1_training_op = optimizer.minimize(phase1_loss)

# 训练phase2时,phase1会冻结
with tf.name_scope("phase2"):
    phase2_reconstruction_loss = tf.reduce_mean(tf.square(hidden3 - hidden1))
    phase2_reg_loss = regularizer(weights2) + regularizer(weights3)
    phase2_loss = phase2_reconstruction_loss + phase2_reg_loss
    train_vars = [weights2, biases2, weights3, biases3]
    phase2_training_op = optimizer.minimize(phase2_loss, var_list=train_vars)

Pretraining

若大量数据无label,少量数据有label,则用大量无label数据在第一阶段作无监督的Pretraining训练,将encoder部分直接取出,output部分做一个直接改造。减少由于有label数据过少导致的过拟合问题。比如下图中的fully connected,和输出的softmax。

 

去噪(denoising Autoencoder)

如下的强制加入噪声,最后学到的是不带噪声的结果。并且训练时可以加入dropout层,拿掉一部分网络结构(测试时不加)。这些都可以增加训练难度,从而增进网络鲁棒性,让模型更加稳定。

sparse Autoencoder

中间层激活神经元数量有一个上限阈值约束,中间层非常稀疏,只有少量神经元有数据,正所谓言简意赅,这样可以增加中间层对信息的概括表达能力。

第一种加入平方误差,第二种KL距离,如下图可以看出KL距离和MSE之间差别比较。

 

 

 

def kl_divergence(p, q):
    return p * tf.log(p / q) + (1 - p) * tf.log((1 - p) / (1 - q))
learning_rate = 0.01
sparsity_target = 0.1
sparsity_weight = 0.2
[...] # Build a normal autoencoder (the coding layer is hidden1)
optimizer = tf.train.AdamOptimizer(learning_rate)
hidden1_mean = tf.reduce_mean(hidden1, axis=0) # batch mean
sparsity_loss = tf.reduce_sum(kl_divergence(sparsity_target, hidden1_mean))
reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE
loss = reconstruction_loss + sparsity_weight * sparsity_loss
training_op = optimizer.minimize(loss)

# kl距离不能取0值,因而不能使用tann的激活函数,故选取(0,1)的sigmoid函数
hidden1 = tf.nn.sigmoid(tf.matmul(X, weights1) + biases1)
# [...]
logits = tf.matmul(hidden1, weights2) + biases2)
outputs = tf.nn.sigmoid(logits)
reconstruction_loss = tf.reduce_sum(
tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits))

Variational Autoencoder

通过抽样决定输出,使用时体现概率的随机性。是一个generation,同训练集有关,但只是类似,是一个完全新的实例。

如下图,中间层加了一个关于分布均值方差的超正态分布的噪声,从而中间学到的不是简单编码而是数据的模式,使得训练数据与正态分布形成一个映射关系,这样输出层可以输出和输入层非常相像但又不一样的数据。

使用时把encoder去掉,随机加入一个高斯噪声,在输出端可以得到一个完全新的输出。

 

 即input通过NN Encoder之后生成两个coding,其中一个经某种处理后与一个高斯噪声(即一系列服从正态分布的噪声)相乘,和另一个coding相加作为初始的中间coding。下图与上图同理,最终生成的output要最小化重构损失,即越接近0越好。 

 

# smoothing term to avoid computing log(0)
eps = 1e-10 
# 对原输入空间,通过最小化loss,将原本数据映射到规律的正态分布中
latent_loss = 0.5 * tf.reduce_sum(
           tf.square(hidden3_sigma) + tf.square(hidden3_mean) - 1 - tf.log(eps + tf.square(hidden3_sigma)))

latent_loss = 0.5 * tf.reduce_sum(
           tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 - hidden3_gamma)

n_inputs = 28 * 28 # for MNIST
n_hidden1 = 500
n_hidden2 = 500
n_hidden3 = 20 # codings
n_hidden4 = n_hidden2
n_hidden5 = n_hidden1
n_outputs = n_inputs
learning_rate = 0.001

with tf.contrib.framework.arg_scope(
    [fully_connected],
    activation_fn=tf.nn.elu,
    weights_initializer=tf.contrib.layers.variance_scaling_initializer()):
    X = tf.placeholder(tf.float32, [None, n_inputs])
    hidden1 = fully_connected(X, n_hidden1)
    hidden2 = fully_connected(hidden1, n_hidden2)
    # 中间层是一个分布的表示,并加入一个noise
    hidden3_mean = fully_connected(hidden2, n_hidden3, activation_fn=None)
    hidden3_gamma = fully_connected(hidden2, n_hidden3, activation_fn=None)
    hidden3_sigma = tf.exp(0.5 * hidden3_gamma)
    noise = tf.random_normal(tf.shape(hidden3_sigma), dtype=tf.float32) 
    # 使用带noise的层来键之后的层
    hidden3 = hidden3_mean + hidden3_sigma * noise 
    hidden4 = fully_connected(hidden3, n_hidden4)
    hidden5 = fully_connected(hidden4, n_hidden5)
    logits = fully_connected(hidden5, n_outputs, activation_fn=None)
    outputs = tf.sigmoid(logits)

reconstruction_loss = tf.reduce_sum(
             tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits))
latent_loss = 0.5 * tf.reduce_sum(
             tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 –         hidden3_gamma)
cost = reconstruction_loss + latent_loss

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)

init = tf.global_variables_initializer()

# 生成数据
import numpy as np
n_digits = 60
n_epochs = 50
batch_size = 150
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        n_batches = mnist.train.num_examples // batch_size
        for iteration in range(n_batches):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={X: X_batch})
    codings_rnd = np.random.normal(size=[n_digits, n_hidden3])
    outputs_val = outputs.eval(feed_dict={hidden3: codings_rnd})
for iteration in range(n_digits):
    plt.subplot(n_digits, 10, iteration + 1)
    plot_image(outputs_val[iteration])

生成结果如下所示,都是训练集中没有出现的图像

 

转载于:https://www.cnblogs.com/rucwxb/p/8056144.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/318112?site
推荐阅读
相关标签
  

闽ICP备14008679号