赞
踩
由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。
举例:一个 Flink 作业包含 200 个 Task 节点,其中有 199 个节点可以在很短的时间内完成计算。但是有一个节点执行时间远超其他结果,并且随着数据量的持续增加,导致该计算节点挂掉,从而整个任务失败重启。我们可以在 Flink 的管理界面中看到任务的某一个 Task 数据量远超其他节点。
大数据框架的特性
容易数据倾斜情况
Flink 任务出现数据倾斜的直观表现是任务节点频繁出现反压,但是增加并行度后并不能解决问题;部分节点出现 OOM 异常,是因为大量的数据集中在某个节点上,导致该节点内存被爆,任务失败重启。
产生数据倾斜的原因主要有 2 个方面:
因此解决问题的思路也很清晰:
解决数据倾斜问题
当一个小表关联一个超大表时,容易发生数据倾斜,可以用MapJoin把小表全部加载到内存在map端进行join,避免reducer处理。
- 如:SELECT /*+ MAPJOIN(user)*/ l.session_id, u.username from user u
- join page_views lon (u. id=l.user_id) ;
- 复制代码
当无法躲避笛卡尔积时,采用MapJoin,会在Map端完成Join操作,将Join操作的一个或多个表完全读入内存。
MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+MAPJOIN(tablelist) */提示优化器转化为MapJoin 。
其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里
同时可执行的map数是有限的。
通常情况下,作业会通过input的目录产生一个或者多个map任务
主要的决定因素有: input的文件总个数,input的文件大小。
- 举例:
- a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔
- 成7个块(block为128M,6个128m的块和1个12m的块),从而产生7个map数
-
- b) 假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,
- 那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数
- 复制代码
两种方式控制Map数:即减少map数和增加map数
通常我们在使用 Flink 处理实时业务时,上游一般都是消息系统,Kafka 是使用最广泛的大数据消息系统。当使用 Flink 消费 Kafka 数据时,也会出现数据倾斜。
需要十分注意的是,我们 Flink 消费 Kafka 的数据时,是推荐上下游并行度保持一致,即 Kafka 的分区数等于 Flink Consumer 的并行度。
但是会有一种情况,为了加快数据的处理速度,来设置 Flink 消费者的并行度大于 Kafka 的分区数。如果你不做任何的设置则会导致部分 Flink Consumer 线程永远消费不到数据。
这时候你需要设置 Flink 的 Redistributing,也就是数据重分配。
业务上通过 GroupBy 进行分组,然后紧跟一个 SUM、COUNT 等聚合操作是非常常见的。我们都知道 GroupBy 函数会根据 Key 进行分组,完全依赖 Key 的设计,如果 Key 出现热点,那么会导致巨大的 shuffle,相同 key 的数据会被发往同一个处理节点;如果某个 key 的数据量过大则会直接导致该节点成为计算瓶颈,引起反压。
KeyBy 是我们经常使用的分组聚合函数之一。在实际的业务中经常会碰到这样的场景:双十一按照下单用户所在的省聚合求订单量最高的前 10 个省,或者按照用户的手机类型聚合求访问量最高的设备类型等。
喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。