当前位置:   article > 正文

Flink-CDC实践(含实操步骤与截图)_flink cdc 实践

flink cdc 实践

前言

本文主要对B站的Flink视频进行学习并实操,将相关重点进行记录,当做自己的学习笔记,以便快速上手进行开发。

Flink CDC

1. CDC简介

1.1 什么是 CDC

CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库 的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录 下来,写入到消息中间件中以供其他服务进行订阅及消费。

1.2 CDC 的种类

CDC 主要分为基于查询和基于 Binlog 两种方式。

在这里插入图片描述

1.3 Flink-CDC

Flink 社区开发了 flink-cdc-connectors 组件,这是一个可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。

开源地址:https://github.com/ververica/flink-cdc-connectors

2. Flink CDC 案例实操

2.1 DataStream 方式的应用

2.1.1 导入依赖
<dependencies>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>1.12.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.12</artifactId>
        <version>1.12.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients_2.12</artifactId>
        <version>1.12.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>3.1.3</version>
    </dependency>
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>5.1.49</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-table-planner-blink_2.12</artifactId>
        <version>1.12.0</version>
    </dependency>
    <dependency>
        <groupId>com.ververica</groupId>
        <artifactId>flink-connector-mysql-cdc</artifactId>
        <version>2.0.0</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.75</version>
    </dependency>
</dependencies>

<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
              <!-- 可以将依赖打到jar包中 -->
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.0.0</version>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
2.1.2 编写代码
import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * FlinkCDC
 *
 * @author hutianyi
 * @date 2022/5/30
 **/
public class FlinkCDC {
    public static void main(String[] args) throws Exception {

        //1.获取Flink执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //通过FlinkCDC构建SourceFunction
        DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .username("root")
                .password("123456")
                .databaseList("cdc_test")	//监控的数据库
                .tableList("cdc_test.user_info")	//监控的数据库下的表
                .deserializer(new StringDebeziumDeserializationSchema())//反序列化
                .startupOptions(StartupOptions.initial())
                .build();
        DataStreamSource<String> dataStreamSource = env.addSource(sourceFunction);

        //3.数据打印
        dataStreamSource.print();

        //4.启动任务
        env.execute("FlinkCDC");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

开启MysqlBinlog:

sudo vim /etc/my.cnf
  • 1

log-bin=mysql-bin
binlog_format=row
binlog-do-db=cdc_test
  • 1
  • 2
  • 3

重启mysql:

sudo systemctl restart mysqld
  • 1

切换至root用户,检查是否成功开启:

cd /var/lib/mysql
  • 1

新建数据库和表,并写入数据:

重新查看binlog文件:

已经由154变成了926,说明binlog开启没有问题。

启动项目:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yC2i0SHQ-1653917022942)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530165404280.png)]

新增一条数据:

可以看到控制台已经捕获到新增的数据:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j18lJXWF-1653917022942)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530165609574.png)]

修改第二条数据:

在控制台可以看到捕获到变化的数据:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AGsAXj2R-1653917022942)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530170038793.png)]

删除第二条数据:


只有before的数据。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fngPkuaA-1653917022942)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530170609441.png)]

注意到op有不同的值:

r:查询读取 c:新增 u:更新 d:删除

2.2.3 提交到集群运行

代码中开启checkpoint:

//1.1开启checkpoint
env.enableCheckpointing(5000);//5秒钟
env.getCheckpointConfig().setCheckpointTimeout(10000);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/cdc-test/ck"));
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

打包:

启动flink集群:

./start-cluster.sh
  • 1

将打好的jar包上传至集群:

启动:

bin/flink run -m hadoop102:8081 -c com.tianyi.FlinkCDC ./flink-cdc-1.0-SNAPSHOT-jar-with-dependencies.jar
  • 1

在Flink webui进行查看:8081端口

查看日志:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fJazqQrJ-1653917022943)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530202319139.png)]

2.1.4 断点续传savepoint

给当前的 Flink 程序创建 Savepoint:

bin/flink savepoint JobId hdfs://hadoop102:8020/flink/save
  • 1

关闭程序以后从 Savepoint 重启程序:

bin/flink run -s hdfs://hadoop102:8020/flink/save/... -c 全类名 flink-1.0-SNAPSHOT-jar-with-dependencies.jar
  • 1

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FOiRSioM-1653917022943)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530202737681.png)]

2.2 FlinkSQL 方式的应用

2.2.1 代码实现
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

public class FlinkSQLCDC {
    public static void main(String[] args) throws Exception {
        //1.创建执行环境
        StreamExecutionEnvironment env =
            StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        //2.创建 Flink-MySQL-CDC 的 Source
        tableEnv.executeSql("CREATE TABLE user_info (" +
                            " id STRING primary key," +
                            " name STRING," +
                            " sex STRING" +
                            ") WITH (" +
                            " 'connector' = 'mysql-cdc'," +
                            " 'scan.startup.mode' = 'latest-offset'," +
                            " 'hostname' = 'hadoop102'," +
                            " 'port' = '3306'," +
                            " 'username' = 'root'," +
                            " 'password' = '123456'," +
                            " 'database-name' = 'cdc_test'," +
                            " 'table-name' = 'user_info'" +
                            ")");
        //3. 查询数据并转换为流输出
        Table table = tableEnv.sqlQuery("select * from user_info");
        DataStream<Tuple2<Boolean, Row>> retractStream = tableEnv.toRetractStream(table, Row.class);
        retractStream.print();
        //4. 启动
        env.execute("FlinkSQLCDC");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

启动项目:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P1poK4jf-1653917022944)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530210204715.png)]

2.2.2 测试

增添数据:

控制台捕获到变更:

2.3 自定义反序列化器

代码实现:

import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.util.List;

public class CustomerDeserializationSchema implements DebeziumDeserializationSchema<String> {


    /**
     * {
     * "db":"",
     * "tableName":"",
     * "before":{"id":"1001","name":""...},
     * "after":{"id":"1001","name":""...},
     * "op":""
     * }
     */
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {

        //创建JSON对象用于封装结果数据
        JSONObject result = new JSONObject();

        //获取库名&表名
        String topic = sourceRecord.topic();
        String[] fields = topic.split("\\.");
        result.put("db", fields[1]);
        result.put("tableName", fields[2]);

        //获取before数据
        Struct value = (Struct) sourceRecord.value();
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        if (before != null) {
            //获取列信息
            Schema schema = before.schema();
            List<Field> fieldList = schema.fields();

            for (Field field : fieldList) {
                beforeJson.put(field.name(), before.get(field));
            }
        }
        result.put("before", beforeJson);

        //获取after数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();
        if (after != null) {
            //获取列信息
            Schema schema = after.schema();
            List<Field> fieldList = schema.fields();

            for (Field field : fieldList) {
                afterJson.put(field.name(), after.get(field));
            }
        }
        result.put("after", afterJson);

        //获取操作类型
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        result.put("op", operation);

        //输出数据
        collector.collect(result.toJSONString());

    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

创建自定义序列化对象处理:

import com.tianyi.func.CustomerDeserializationSchema;
import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkCDC2 {

    public static void main(String[] args) throws Exception {

        //1.获取Flink 执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.1 开启CK
//        env.enableCheckpointing(5000);
//        env.getCheckpointConfig().setCheckpointTimeout(10000);
//        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/cdc-test/ck"));

        //2.通过FlinkCDC构建SourceFunction
        DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .username("root")
                .password("123456")
                .databaseList("cdc_test")
//                .tableList("cdc_test.user_info")
				//使用自定义的反序列化器
                .deserializer(new CustomerDeserializationSchema())
                .startupOptions(StartupOptions.initial())
                .build();
        DataStreamSource<String> dataStreamSource = env.addSource(sourceFunction);

        //3.数据打印
        dataStreamSource.print();

        //4.启动任务
        env.execute("FlinkCDC");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zhW6ie9e-1653917022944)(C:\Users\Husheng\Desktop\大数据框架学习\image-20220530211450198.png)]

2.4 DataStream 和 FlinkSQL 方式的对比

DataStream 在 Flink1.12 和 1.13 都可以用,而 FlinkSQL 只能在 Flink1.13 使用。

DataStream 可以同时监控多库多表,而 FlinkSQL 只能监控单表。

总结

本文主要介绍了Flink CDC的概念,以及对于DataStream 和 FlinkSQL两种方式进行实操,可以直观得感受FlinkCDC的强大功能,并对两种方式进行了对比。

参考资料

  1. https://www.bilibili.com/video/BV1wL4y1Y7Xu?p=13
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/473099
推荐阅读
相关标签
  

闽ICP备14008679号