当前位置:   article > 正文

大模型实战—通义千问大模型微调_通义千问大模型 怎么训练

通义千问大模型 怎么训练

大模型实战—通义千问大模型微调

在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,

有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。

本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的 Text Generation WebUI,它提供了一个训练LoRA的功能。

LoRA是什么

LoRA之于大语言模型,就像设计模式中的装饰器模式:装饰器模式允许向一个对象添加新的功能,而不改变其结构。具体来说,装饰器模式会创建一个装饰类,用来包装原有的类,并在保持原有类方法签名完整性的前提下,提供额外的功能。

LoRA,全称为Low-Rank Adaptation,是一种微调大型语言模型的技术。LoRA通过向大型语言模型添加一层额外的、低秩的可训练权重,来增强或调整模型的功能,而不需要改变原有模型的结构或重新训练整个模型。这就像是用装饰器包装了一个对象,增强了其功能,但没有改变原有对象的本质。

LoRA的关键思想是在模型的某些部分(通常是Transfomer注意力机制的权重矩阵)中引入低秩矩阵(低秩就是矩阵的行和列相对大模型的矩阵比较少)。在前向传播和反向传播过程中,这些低秩矩阵与大模型的权重矩阵相结合,从而实现对模型的微调。

相比完整的训练,LoRA训练具备两个明显的优势:

  • 高效&#
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/701252
推荐阅读
相关标签
  

闽ICP备14008679号