当前位置:   article > 正文

【C++】哈希的概念及STL中有关哈希容器的使用

【C++】哈希的概念及STL中有关哈希容器的使用

在这里插入图片描述

目录

前言

本篇文章将讲述关于哈希的概念、哈希函数、哈希冲突和冲突后的解决方案,具体有闭散列和开散列,并且文章中还有对闭散列中的线性探测、开散列的模拟实现和测试。文章中还会对 unordered_set 和 unordered_map 中经常使用的函数进行对概念和特性的讲解,还会介绍它们函数的使用方法。

由于不想文章篇幅太过长,有关于哈希表的实现、unordered_set 和 unordered_map封装实现、位图和布隆过滤器将会在后面的文章进行讲解。


一、unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍。


1.1 标准库中的unordered_set

1.1.1 unordered_set的介绍

unordered_set的文档介绍

  1. 在内部,unordered_set没有对按照任何特定的顺序排序。
  2. 在unordered_set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。unordered_set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
  3. 在unordered_set中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  4. 它的迭代器至少是前向迭代器。

在这里插入图片描述

unordered_set的模板参数列表介绍

Key:表示unordered_set中存储的元素类型,即键的类型,也是值的类型。

Hash:表示用于计算元素哈希值的哈希函数对象类型,默认为std::hash,用于确定元素在unordered_set内部存储位置的函数。

Pred:表示用于比较两个元素是否相等的函数对象类型,默认为std::equal_to,用于检查unordered_set中的元素是否相等。

Alloc:表示用于分配内存的分配器类型,默认为std::allocator,用于分配和释放unordered_set内存空间(目前不需要掌握)。


1.1.2 unordered_set的常用接口说明

1.1.2.1 unordered_set对象的常见构造
1.1.2.1.1 无参构造函数
unordered_set ( size_type n = /* see below */,
                     const hasher& hf = hasher(),
                     const key_equal& eql = key_equal());
  • 1
  • 2
  • 3
#include<iostream>
#include<unordered_set>

using namespace std;

int main()
{
	unordered_set<int> us;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.1.2.1.2 有参构造函数(使用迭代器进行初始化构造)
template <class InputIterator>
         unordered_set ( InputIterator first, InputIterator last,
              size_type n = /* see below */,
              const hasher& hf = hasher(),
              const key_equal& eql = key_equal());
  • 1
  • 2
  • 3
  • 4
  • 5
int main()
{
	string s("I Love You");
	unordered_set<int> us(s.begin(), s.end());

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述


1.1.2.1.3 拷贝构造函数
unordered_set ( const unordered_set& ust );
  • 1
int main()
{
	string s("I Love You");
	unordered_set<int> us1(s.begin(), s.end());
	unordered_set<int> us2(us1);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述


1.1.2.2 unordered_set iterator 的使用

由于 unordered_set 的迭代器是单向的,所以没有 rbegin()rend() 函数 。

1.1.2.2.1 begin()函数
	  iterator begin() noexcept;
const_iterator begin() const noexcept;
获取第一个数据位置的iterator/const_iterator
  • 1
  • 2
  • 3
1.1.2.2.2 end()函数
	  iterator end() noexcept;
const_iterator end() const noexcept;
获取最后一个数据的下一个位置的iterator/const_iterator
  • 1
  • 2
  • 3
int main()
{
	string s("I Love You");
	unordered_set<int> us(s.begin(), s.end());

	unordered_set<int>::iterator it = us.begin();
	while (it != us.end())
	{
		cout << *it << ' ';
		++it;
	}
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述


1.1.2.3 unordered_set 对象的容量操作
1.1.2.3.1 size()函数
size_type size() const noexcept;	获取数据个数
  • 1
int main()
{
	string s("I Love You");
	unordered_set<int> us(s.begin(), s.end());

	cout << us.size() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在这里插入图片描述


1.1.2.3.2 empty()函数
bool empty() const noexcept;	判断是否为空
  • 1
int main()
{
	string s("I Love You");
	unordered_set<int> us1;
	unordered_set<int> us2(s.begin(), s.end());

	cout << "us1 empty:" << us1.empty() << endl;
	cout << "us2 empty:" << us2.empty() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.1.2.4 unordered_set 对象的增删查改及访问
1.1.2.4.1 insert()函数
pair<iterator,bool> insert ( const value_type& val );
在unordered_set 中插入一个元素val:

若unordered_set 中有这个元素,插入失败,则返回一个pair对象
pair.first=原来val元素位置的迭代器,pair.second = false

若unordered_set 中没有这个元素,插入成功,则返回一个pair对象
pair.first=新插入val元素位置的迭代器,pair.second = true

iterator insert ( const_iterator hint, const value_type& val );
从hint位置开始查找插入位置,
若unordered_set 中有这个元素,并返回原来val位置的迭代器
若unordered_set 中没有这个元素,返回插入wal元素位置的迭代器

template <class InputIterator>
    void insert ( InputIterator first, InputIterator last );
插入一段迭代器区间的元素
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
int main()
{
	unordered_set<int> us;
	string ss("I Love Y");

	// pair<iterator, bool> insert(const value_type & val);
	pair<unordered_set<int>::iterator, bool> ret;
	for (int i = 0; i < 14; i += 2)
	{
		ret = us.insert(i % 10);
		cout << "插入元素:" << *ret.first
			<< "  是否成功:" << ret.second << endl;
	}

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	// iterator insert ( const_iterator hint, const value_type& val );
	us.insert(us.begin(), 520);
	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	// template <class InputIterator>
	//		void insert(InputIterator first, InputIterator last);
	us.insert(ss.begin(), ss.end());

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

在这里插入图片描述


1.1.2.4.2 erase()函数
iterator erase ( const_iterator position );
删除position位置的元素

size_type erase ( const key_type& k );
删除元素k并返回删除k的个数

iterator erase ( const_iterator first, const_iterator last );
删除一段迭代器区间内的元素
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
int main()
{
	unordered_set<int> us{ 8,4,0,1,5,7,2,3 };

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	unordered_set<int>::iterator it = us.begin();
	// iterator erase ( const_iterator position );
	us.erase(it);

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	// 删除元素val并返回val的个数
	// size_type erase(const key_type & k);
	cout << "erase number:" << us.erase(5) << endl;;

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	// 删除一段迭代器区间内的元素
	// iterator erase ( const_iterator first, const_iterator last );
	us.erase(++us.begin(), --us.end());

	for (auto e : us)
	{
		cout << e << ' ';
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

在这里插入图片描述


1.1.2.4.3 swap()函数
void swap ( unordered_set& ust );
交换两个unordered_set的数据空间
  • 1
  • 2
int main()
{
	unordered_set<int> us1{ 1,3,5,7,9 };
	unordered_set<int> us2{ 0,2,4,6,8 };

	cout << "us1:";
	for (auto e : us1)
	{
		cout << e << ' ';
	}
	cout << endl;

	cout << "us2:";
	for (auto e : us2)
	{
		cout << e << ' ';
	}
	cout << endl;

	us1.swap(us2);

	cout << "us1:";
	for (auto e : us1)
	{
		cout << e << ' ';
	}
	cout << endl;

	cout << "us2:";
	for (auto e : us2)
	{
		cout << e << ' ';
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

在这里插入图片描述


1.1.2.4.4 clear()函数
void clear() noexcept;
清除unordered_set中的有效数据
  • 1
  • 2
int main()
{
	unordered_set<int> us{ 1,3,5,7,9 };
	cout << "us size:" << us.size() << endl;

	us.clear();

	cout << "us size:" << us.size() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.1.2.4.5 find()函数
	  iterator find ( const key_type& k );
const_iterator find ( const key_type& k ) const;
返回unordered_set中为k元素位置的迭代器
  • 1
  • 2
  • 3
int main()
{
	unordered_set<int> us{ 1,3,5,7,9 };

	unordered_set<int>::iterator ret = us.find(5);

	cout << *ret << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述


1.1.2.4.6 count()函数
size_type count ( const key_type& k ) const;
返回unordered_set中为k元素的个数
由于unordered_set并不允许相同的元素存在
所以unordered_set中所有元素的个数都是1
  • 1
  • 2
  • 3
  • 4
int main()
{
	unordered_set<int> us{ 1,3,5,7,9 };
	size_t count = us.count(9);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述


1.1.2.5 unordered_set的桶操作
1.1.2.5.1 bucket_count()函数
size_type bucket_count() const noexcept;
返回哈希桶中桶的总个数
  • 1
  • 2
1.1.2.5.2 bucket_size()函数
size_type bucket_size ( size_type n ) const;
返回n号桶中有效元素的总个数
  • 1
  • 2
1.1.2.5.3 bucket()函数
size_type bucket ( const key_type& k ) const;
返回元素key所在的桶号
  • 1
  • 2
int main()
{
	unordered_set<int> us;

	for (int i = 0; i < 1000; i++)
	{
		us.insert(i + rand());
	}

	cout << "bucket_count:" << us.bucket_count() << endl;
	cout << "bucket_size:" << us.bucket_size(20) << endl;
	cout << "bucket:" << us.bucket(*us.begin()) << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

在这里插入图片描述


1.2 标准库中的unordered_map

1.2.1 unordered_map的介绍

unordered_map的文档介绍

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。

在这里插入图片描述

unordered_map的模板参数列表介绍

Key:表示unordered_map中键的类型,即键的类型。

T:表示unordered_map中值的类型,即映射到键的值的类型。

Hash:表示用于计算键的哈希值的哈希函数对象类型,默认为std::hash,用于确定键在unordered_map内部存储位置的函数。

Pred:表示用于比较两个键是否相等的函数对象类型,默认为std::equal_to,用于检查unordered_map中的键是否相等。

Alloc:表示用于分配内存的分配器类型,默认为std::allocator<std::pair<const Key, T>>,用于分配和释放unordered_map内存空间。(目前不需要掌握)


1.2.2 unordered_map的常用接口说明

1.2.2.1 unordered_map对象的常见构造
1.2.2.1.1 无参构造函数
unordered_map ( size_type n = /* see below */,
                 const hasher& hf = hasher(),
                  const key_equal& eql = key_equal());
  • 1
  • 2
  • 3
#include<iostream>
#include<unordered_map>

using namespace std;

int main()
{
	unordered_map<int,int> um;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.2.2.1.2 有参构造函数(使用迭代器进行初始化构造)
template <class InputIterator>
	  unordered_map ( InputIterator first, InputIterator last,
             size_type n = /* see below */,
              const hasher& hf = hasher(),
              const key_equal& eql = key_equal());
  • 1
  • 2
  • 3
  • 4
  • 5

unordered_map 是 C++ STL 中的一种无序关联容器,它通过哈希表实现,可以提供快速的插入、查找和删除操作。

当你尝试使用其他容器的迭代器构造 unordered_map 时,可能会遇到编译错误,因为 unordered_map 的构造函数通常不接受其他容器类型的迭代器。

如果正在使用其他容器(如 vector、list 等),确保使用正确的迭代器类型进行构造。unordered_map 构造函数接受的是一对指向键值对的迭代器,其中每个键值对是一个 pair<const Key, Value> 类型的对象。

int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um1(v.begin(),v.end());
	unordered_map<string, string> um2(um1.begin(), um1.end());

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述


1.2.2.1.3 拷贝构造函数
unordered_map ( const unordered_map& ump );
  • 1
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um1(v.begin(), v.end());
	unordered_map<string, string> um2(um1);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述


1.2.2.2 unordered_map iterator 的使用

由于 unordered_map 的迭代器是单向的,所以没有 rbegin()rend() 函数 。

1.1.2.2.1 begin()函数
	  iterator begin() noexcept;
const_iterator begin() const noexcept;
获取第一个数据位置的iterator/const_iterator
  • 1
  • 2
  • 3
1.2.2.2.2 end()函数
	  iterator end() noexcept;
const_iterator end() const noexcept;
获取最后一个数据的下一个位置的iterator/const_iterator
  • 1
  • 2
  • 3
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um(v.begin(), v.end());

	unordered_map<string, string>::iterator it = um.begin();
	while (it != um.end())
	{
		cout << it->first << ' ' << it->second << endl;
		++it;
	}
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述


1.2.2.3 unordered_set 对象的容量操作
1.2.2.3.1 size()函数
size_type size() const noexcept;	获取数据个数
  • 1
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um(v.begin(), v.end());

	cout << um.size() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在这里插入图片描述


1.2.2.3.2 empty()函数
bool empty() const noexcept;	判断是否为空
  • 1
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um1;
	unordered_map<string, string> um2(v.begin(), v.end());

	cout << "um1 empty:" << um1.empty() << endl;
	cout << "um2 empty:" << um2.empty() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.2.2.4 unordered_map对象的增删查改及访问
1.2.2.4.1 insert()函数
pair<iterator,bool> insert ( const value_type& val );
在unordered_map中插入键值对val:

若unordered_map中有这个键值对,插入失败,则返回一个pair对象
pair.first=原来val位置的迭代器,pair.second = false

若unordered_map中没有这个键值对,插入成功,则返回一个pair对象
pair.first=新插入val位置的迭代器,pair.second = true

iterator insert ( const_iterator hint, const value_type& val );
从hint位置开始查找插入位置,
若unordered_map中有这个键值对,并返回原来val位置的迭代器
若unordered_map中没有这个键值对,返回插入val位置的迭代器

template <class InputIterator>
    void insert ( InputIterator first, InputIterator last );
    插入一段迭代器区间的元素
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um1;
	unordered_map<string, string> um2(v.begin(), v.end());

	// pair<iterator, bool> insert(const value_type & val);
	pair<unordered_map<string, string>::iterator,bool> ret1 = 
		um1.insert(make_pair("empty", "空"));

	cout << ret1.first->first << ' ' << ret1.first->second
		<< ' ' << "插入是否成功:" << ret1.second << endl;

	for (auto um : um1)
	{
		cout << um.first << um.second << endl;
	}
	cout << endl;

	// iterator insert(const_iterator hint, const value_type & val);
	unordered_map<string, string>::iterator ret2 =
		um1.insert(um1.begin(), make_pair("want", "想要"));

	cout << ret2->first << ' ' << ret2->second << endl;

	for (auto um : um1)
	{
		cout << um.first << um.second << endl;
	}
	cout << endl;

	// template <class InputIterator>
	//		void insert(InputIterator first, InputIterator last);
	um1.insert(um2.begin(), um2.end());
	for (auto um : um1)
	{
		cout << um.first << um.second << endl;
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

在这里插入图片描述


1.2.2.4.2 operator[]
mapped_type& operator[] ( const key_type& k );
mapped_type& operator[] ( key_type&& k );
  • 1
  • 2
int main()
{
	vector<pair<string, string>> v({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um(v.begin(), v.end());

	// 若unordered_map中有这个元素,那么就返回key对应value的引用
	cout << "operator[]:" << um["string"] << endl;

	// 若map中没有这个元素,那么map中将会插入这个元素
	// 使用默认构造初始化value,并返回
	cout << "operator[]:" << um["want"] << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

在这里插入图片描述


1.2.2.4.3 erase()函数
iterator erase ( const_iterator position );
删除position位置的元素

size_type erase ( const key_type& k );
删除元素k并返回k的个数

iterator erase ( const_iterator first, const_iterator last );
删除一段迭代器区间内的元素
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
int main()
{
	unordered_map<string, string> um({ { "string","字符串" }, { "sort","排序" } });
	um.insert(make_pair("want", "想要"));
	um.insert(make_pair("love", "爱"));
	um.insert(make_pair("name", "名字"));

	for (auto pr : um)
	{
		cout << pr.first << ' ' << pr.second << endl;
	}
	cout << endl;

	// iterator erase(const_iterator position);
	um.erase(++um.begin());
	for (auto pr : um)
	{
		cout << pr.first << ' ' << pr.second << endl;
	}
	cout << endl;

	// size_type erase(const key_type & k);
	cout << "erase number:" << um.erase("string") << endl;
	for (auto pr : um)
	{
		cout << pr.first << ' ' << pr.second << endl;
	}
	cout << endl;

	um.erase(++um.begin(), --um.end());
	for (auto pr : um)
	{
		cout << pr.first << ' ' << pr.second << endl;
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

在这里插入图片描述


1.2.2.4.4 swap()函数
void swap ( unordered_map& ump );
交换两个unordered_map的数据空间
  • 1
  • 2
int main()
{
	unordered_map<string, string> um1({ { "string","字符串" }, { "sort","排序" } });
	unordered_map<string, string> um2({ { "want", "想要" }, { "love", "爱" } });

	cout << "um1:" << endl;
	for (auto pa : um1)
	{
		cout << pa.first << ' ' << pa.second << endl;
	}
	cout << endl;

	cout << "um2:" << endl;
	for (auto pa : um2)
	{
		cout << pa.first << ' ' << pa.second << endl;
	}
	cout << endl;

	um1.swap(um2);

	cout << "um1:" << endl;
	for (auto pa : um1)
	{
		cout << pa.first << ' ' << pa.second << endl;
	}
	cout << endl;

	cout << "um2:" << endl;
	for (auto pa : um2)
	{
		cout << pa.first << ' ' << pa.second << endl;
	}
	cout << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

在这里插入图片描述


1.2.2.4.5 clear()函数
void clear() noexcept;
清除unordered_map中的有效数据
  • 1
  • 2
int main()
{
	unordered_map<string, string> um({ { "string","字符串" }, { "sort","排序" } });
	cout << "um size:" << um.size() << endl;

	um.clear();

	cout << "um size:" << um.size() << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述


1.2.2.4.6 find()函数
	  iterator find ( const key_type& k );
const_iterator find ( const key_type& k ) const;
返回unordered_map中为k元素位置的迭代器
  • 1
  • 2
  • 3
int main()
{
	unordered_map<string, string> um({ { "string","字符串" }, { "sort","排序" } });

	unordered_map<string, string>::iterator it = um.find("string");

	cout << it->first << ' ' << it->second << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述


1.2.2.4.7 count()函数
size_type count ( const key_type& k ) const;
返回unordered_map中关键码为k元素的个数
由于unordered_map并不允许相同的元素存在
所以unordered_map中所有元素的个数都是1
  • 1
  • 2
  • 3
  • 4
int main()
{
	unordered_map<string, string> um({ { "string","字符串" }, { "sort","排序" } });

	cout << "count : " << um.count("string") << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述


1.2.2.5 unordered_map的桶操作
1.2.2.5.1 bucket_count()函数
size_type bucket_count() const noexcept;
返回哈希桶中桶的总个数
  • 1
  • 2
1.2.2.5.2 bucket_size()函数
size_type bucket_size ( size_type n ) const;
返回n号桶中有效元素的总个数
  • 1
  • 2
1.2.2.5.3 bucket()函数
size_type bucket ( const key_type& k ) const;
返回关键码为key所在的桶号
  • 1
  • 2
int main()
{
	srand(time(0));
	const size_t N = 10000;

	unordered_map<int, int> um;

	for (size_t i = 0; i < N; ++i)
	{
		int num = rand();
		um.insert(make_pair(num, num));
	}

	cout << "bucket_count:" << um.bucket_count() << endl;
	cout << "bucket_size:" << um.bucket_size(20) << endl;
	cout << "bucket:" << um.bucket(um.begin()->first) << endl;

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

在这里插入图片描述


二、底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

2.1 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

:我们会发现44的存储位置应该是4,但是我们发现4上已经有元素了,那么继续向后查找存储位置,但是我们会发现后面的5、6和7上都有元素了,所以44只能存在8这个位置了,所以这里我们发现产生冲突的数据堆积在一块


2.2 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) ==Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

发生哈希冲突该如何处理呢?
:设计合理的哈希函数,使其能够将输入值均匀地映射到哈希表的各个位置;或者根据数据集的特征调整哈希函数的设计,减少冲突的可能性。


2.3 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理
哈希函数设计原则

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定址法 ------ (常用)
    取关键字的某个线性函数为散列地址:Hash(Key) = A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况

  2. 除留余数法 ------ (常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key%p(p<=m),将关键码转换成哈希地址

  3. 平方取中法 ------ (了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  4. 折叠法 ------ (了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  5. 随机数法 ------ (了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。通常应用于关键字长度不等时采用此法

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


2.4 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

2.4.1 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

2.4.1.1 线性探测

例如下图中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

①插入
------⑴通过哈希函数获取待插入元素在哈希表中的位置
------⑵如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
在这里插入图片描述

②删除
------采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
  • 1
  • 2
  • 3

线性探测的实现及测试

#include<iostream>
#include<string>
#include<vector>
#include<unordered_set>
#include<set>

using namespace std;

// 整数类型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

// 特化
template<>
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		size_t sum = 0;
		for (size_t i = 0; i < s.size(); i++)
		{
			sum = sum * 31 + s[i];
		}
		return sum;
	}
};

namespace open_address
{
	enum status
	{
		EMPTY,
		EXIST,
		DELETE
	};

	template<class K , class V>
	struct HashNode
	{
		pair<K, V> _kv;
		status _st;

		// 默认构造函数
		HashNode() : _st(EMPTY) {}

		HashNode(pair<K, V>& kv, status st = EMPTY)
			:_kv(kv)
			, _st(st)
		{}
	};

	template<class K, class V , class HF = HashFunc<K>>
	class hash_table
	{
	public:
		hash_table(int n = 10)
			:_table(vector<HashNode<K, V>>(n))
			,_n(n)
		{}

		bool Insert(const pair<K, V>& kv)
		{
			// 每个关键码只能存在一个
			if (Find(kv.first))
				return false;

			// 当负载因子为0.7时扩容
			if (_n * 10 / _table.size() == 7)
			{
				int newsize = 2 * _table.size();
				hash_table<K,V> newtable(newsize);

				for (int i = 0; i < _table.size(); i++)
				{
					newtable.Insert(_table[i]._kv);
				}

				// 这里只需要交换存储的数据即可
				// 因为两个表中数据个数相同,不需要交换
				newtable._table.swap(_table);
			}

			// 找到hashi对应位置为 EMPTY 或 DELETE 的位置
			HF hf;
			int hashi = hf(kv.first) % _table.size();
			while (_table[hashi]._st == EXIST)
			{
				hashi++;

				hashi %= _table.size();
			}

			// 插入元素
			_n++;
			_table[hashi]._kv = kv;
			_table[hashi]._st = EXIST;

			return true;
		}

		bool Erase(const K& key)
		{
			HashNode* tmp = Find(key.first);
			// 找不到则删除失败
			if (tmp == nullptr)
				return false;

			// 找到了,删除,改变状态即可
			tmp->_st = DELETE;
			_n--;

			return true;
		}

		HashNode<K,V>* Find(const K& key)
		{
			HF hf;
			// 当hashi指向的位置为 EXIST 或 DELETE 时
			// 需要一直查找,直到遇到 EMPTY 时停止
			int hashi = hf(key) % _table.size();
			while (_table[hashi]._st != EMPTY)
			{
				// 找到,返回这个节点
				// 找到这个节点的状态必须时 EXIST
				// 因为删除的时候,只修改了状态为 DELETE
				// 节点的关键码没有改变,若没有这个条件的限制
				// 删除某个元素后,再插入这个元素就插入不进去了
				if (_table[hashi]._st == EXIST &&
					_table[hashi]._kv.first == key)
				{
					return &_table[hashi];
				}
				hashi++;

				hashi %= _table.size();
			}

			// 找不到返回空
			return nullptr;
		}

		size_t Size()const
		{
			return _n;
		}

		bool Empty() const
		{
			return _n == 0;
		}

		void Swap(hash_table<K, V>& ht)
		{
			swap(_n, ht._n);
			_table.swap(ht._table);
		}

		void Print()
		{
			for (int i = 0; i < _table.size(); i++)
			{
				cout << '[' << _table[i]._kv.first << "]->" <<
					_table[i]._kv.second << endl;
			}
			cout << endl;
		}
	private:
		vector<HashNode<K,V>> _table;
		size_t _n;      // 哈希表中有效元素的个数

/
	public:
		void TestHT()
		{
			hash_table<int, int> ht;
			int a[] = { 4,14,24,34,5,7,1 };
			for (auto e : a)
			{
				ht.Insert(make_pair(e, e));
			}

			ht.Insert(make_pair(3, 3));
			ht.Insert(make_pair(3, 3));
			ht.Insert(make_pair(-3, -3));

			ht.Print();
		}

		void TestHT2()
		{
			string arr[] = { "香蕉", "甜瓜","苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };
			//HashTable<string, int, HashFuncString> ht;
			hash_table<string, int> ht;
			for (auto& e : arr)
			{
				//auto ret = ht.Find(e);
				HashNode<string, int>* ret = ht.Find(e);
				if (ret)
				{
					ret->_kv.second++;
				}
				else
				{
					ht.Insert(make_pair(e, 1));
				}
			}

			ht.Print();

			ht.Insert(make_pair("apple", 1));
			ht.Insert(make_pair("sort", 1));

			ht.Insert(make_pair("abc", 1));
			ht.Insert(make_pair("acb", 1));
			ht.Insert(make_pair("aad", 1));

			ht.Print();
		}
	};
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226

思考:哈希表什么情况下进行扩容?

在这里插入图片描述

线性探测优点:实现非常简单,
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。如何缓解呢?:扩大负载因子。


2.4.1.2 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i =1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小

对于2.1中如果要插入44,产生冲突,使用解决后的情况为:
在这里插入图片描述

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。


2.4.2 开散列

2.4.2.1.开散列概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

在这里插入图片描述

2.4.2.2 开散列实现及测试
// 整数类型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

// 特化
template<>
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		size_t sum = 0;
		for (int i = 0; i < s.size(); i++)
		{
			sum = sum * 31 + s[i];
		}
		return sum;
	}
};

namespace hash_bucket
{
	template<class K, class V>
	struct HashNode
	{
		HashNode* _next;
		pair<K, V> _kv;

		HashNode(const pair<K, V>& kv)
			:_kv(kv)
			, _next(nullptr)
		{}
	};

	
	template<class K, class V , class HF = HashFunc<K>>
	class hash_table
	{
	public:
		typedef HashNode<K, V> Node;

	public:
		hash_table(int n = 10)
			:_table(vector<Node*>(n))
			,_n(0)
		{}

		~hash_table()
		{
			for (int i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];

				while (cur)
				{
					Node* next = cur->_next;
					delete cur;

					cur = next;
				}

				_table[i] = nullptr;
			}
		}

		bool Insert(const pair<K, V>& kv)
		{
			// 不允许有相同的值
			Node* tmp = Find(kv.first);
			if (tmp != nullptr)
				return false;

			HF hf;
			// 扩容
			if (_n == _table.size())
			{
				int newcapacity = 2 * _table.size();
				hash_table newtable(newcapacity);

				for (int i = 0; i < _table.size(); i++)
				{
					Node* cur = _table[i];

					while (cur)
					{
						Node* next = cur->_next;
						int hashi = hf(cur->_kv.first) % newcapacity;

						cur->_next = newtable._table[hashi];
						newtable._table[hashi] = cur;
						cur = next;
					}

					_table[i] = nullptr;
				}
				_table.swap(newtable._table);
			}

			// 头插 
			int hashi = hf(kv.first) % _table.size();
 			Node* newnode = new Node(kv);
			newnode->_next = _table[hashi];
			_table[hashi] = newnode;
			_n++;

			return true;
		}

		bool Erase(const K& key)
		{
			Node* tmp = Find(key);
			// 找不到则删除失败
			if (tmp == nullptr)
				return false;

			HF hf;
			int hashi = hf(key) % _table.size();
			Node* prev = nullptr;
			Node* cur = _table[hashi];
			while (cur)
			{
				Node* next = cur->_next;
				if (cur->_kv.first == key)
				{
					if (prev == nullptr)
					{
						_table[hashi] = next;
					}
					else
					{
						prev->_next = next;
					}

					_n--;
					delete cur;
					return true;
				}
				else
				{
					prev = cur;
					cur = next;
				}
			}

			return false;
		}

		Node* Find(const K& key)
		{
			HF hf;
			int hashi = hf(key) % _table.size();
			Node* cur = _table[hashi];
			while (cur)
			{
				if (cur ->_kv.first == key)
					return cur;

				cur = cur->_next;
			}

			// 找不到返回空
			return nullptr;
		}

		void Some()
		{
			size_t bucketSize = 0;
			size_t maxBucketLen = 0;
			size_t sum = 0;
			double averageBucketLen = 0;

			for (size_t i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];
				if (cur)
				{
					++bucketSize;
				}

				size_t bucketLen = 0;
				while (cur)
				{
					++bucketLen;
					cur = cur->_next;
				}

				sum += bucketLen;

				if (bucketLen > maxBucketLen)
				{
					maxBucketLen = bucketLen;
				}
			}

			averageBucketLen = (double)sum / (double)bucketSize;

			printf("all bucketSize:%d\n", _table.size());
			printf("bucketSize:%d\n", bucketSize);
			printf("maxBucketLen:%d\n", maxBucketLen);
			printf("averageBucketLen:%lf\n\n", averageBucketLen);
		}

	private:
		vector<Node*> _table;
		int _n;

	public:
		void TestHT1()
		{
			hash_table<int, int> ht;
			int a[] = { 4,14,24,34,5,7,1 };
			for (auto e : a)
			{
				ht.Insert(make_pair(e, e));
			}

			ht.Insert(make_pair(3, 3));
			ht.Insert(make_pair(3, 3));
			ht.Insert(make_pair(-3, -3));

			ht.Some();
		}

		void TestHT2()
		{
			string arr[] = { "香蕉", "甜瓜","苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };
			//HashTable<string, int, HashFuncString> ht;
			hash_table<string, int> ht;
			for (auto& e : arr)
			{
				//auto ret = ht.Find(e);
				HashNode<string, int>* ret = ht.Find(e);
				if (ret)
				{
					ret->_kv.second++;
				}
				else
				{
					ht.Insert(make_pair(e, 1));
				}
			}

			ht.Insert(make_pair("apple", 1));
			ht.Insert(make_pair("sort", 1));

			ht.Insert(make_pair("abc", 1));
			ht.Insert(make_pair("acb", 1));
			ht.Insert(make_pair("aad", 1));
		}

		void TestHT3()
		{
			const size_t N = 1000;

			unordered_set<int> us;
			set<int> s;
			hash_table<int, int> ht;

			vector<int> v;
			v.reserve(N);
			srand(time(0));
			for (size_t i = 0; i < N; ++i)
			{
				//v.push_back(rand()); // N比较大时,重复值比较多
				v.push_back(rand() + i); // 重复值相对少
				//v.push_back(i); // 没有重复,有序
			}

			// 21:15
			size_t begin1 = clock();
			for (auto e : v)
			{
				s.insert(e);
			}
			size_t end1 = clock();
			cout << "set insert:" << end1 - begin1 << endl;

			size_t begin2 = clock();
			for (auto e : v)
			{
				us.insert(e);
			}
			size_t end2 = clock();
			cout << "unordered_set insert:" << end2 - begin2 << endl;

			size_t begin3 = clock();
			for (auto e : v)
			{
				ht.Insert(make_pair(e, e));
			}
			size_t end3 = clock();
			cout << "hash_table insert:" << end3 - begin3 << endl << endl;


			size_t begin4 = clock();
			for (auto e : v)
			{
				s.find(e);
			}
			size_t end4 = clock();
			cout << "set find:" << end4 - begin4 << endl;

			size_t begin5 = clock();
			for (auto e : v)
			{
				us.find(e);
			}
			size_t end5 = clock();
			cout << "unordered_set find:" << end5 - begin5 << endl;

			size_t begin6 = clock();
			for (auto e : v)
			{
				ht.Find(e);
			}
			size_t end6 = clock();
			cout << "hash_table find:" << end6 - begin6 << endl << endl;

			cout << "插入数据个数:" << us.size() << endl << endl;
			ht.Some();

			size_t begin7 = clock();
			for (auto e : v)
			{
				s.erase(e);
			}
			size_t end7 = clock();
			cout << "set erase:" << end7 - begin7 << endl;

			size_t begin8 = clock();
			for (auto e : v)
			{
				us.erase(e);
			}
			size_t end8 = clock();
			cout << "unordered_set erase:" << end8 - begin8 << endl;

			size_t begin9 = clock();
			for (auto e : v)
			{
				ht.Erase(e);
			}
			size_t end9 = clock();
			cout << "hash_table Erase:" << end9 - begin9 << endl << endl;
		}
	};

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353

2.4.2.3 开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

下面扩容部分在insert函数中。

namespace hash_bucket
{
	template<class K, class V , class HF = HashFunc<K>>
	class hash_table
	{
	public:
		typedef HashNode<K, V> Node;
	public:
		bool Insert(const pair<K, V>& kv)
		{
			// 不允许有相同的值
			Node* tmp = Find(kv.first);
			if (tmp != nullptr)
				return false;

			HF hf;
			// 扩容
			if (_n == _table.size())
			{
				int newcapacity = 2 * _table.size();
				hash_table newtable(newcapacity);

				for (int i = 0; i < _table.size(); i++)
				{
					Node* cur = _table[i];

					while (cur)
					{
						Node* next = cur->_next;
						int hashi = hf(cur->_kv.first) % newcapacity;

						cur->_next = newtable._table[hashi];
						newtable._table[hashi] = cur;
						cur = next;
					}

					_table[i] = nullptr;
				}
				_table.swap(newtable._table);
			}

			// 头插 
			int hashi = hf(kv.first) % _table.size();
 			Node* newnode = new Node(kv);
			newnode->_next = _table[hashi];
			_table[hashi] = newnode;
			_n++;

			return true;
		}

	private:
		vector<Node*> _table;
		int _n;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

2.4.2.4 开散列的思考

只能存储key为整形的元素,其他类型怎么解决?
:写一个仿函数将当前类型转化为整数。

// 整数类型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

// 特化为string版本
template<>
struct HashFunc<string>
{
	size_t operator()(const string& s)
	{
		size_t sum = 0;
		for (int i = 0; i < s.size(); i++)
		{
			sum = sum * 31 + s[i];
		}
		return sum;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

2.4.2.5 开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <=0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。


结尾

由于不想文章篇幅太过长,有关于哈希表的实现、unordered_set 和 unordered_map封装实现、位图和布隆过滤器将会在后面的文章进行讲解。

如果有什么建议和疑问,或是有什么错误,大家可以在评论区中提出。
希望大家以后也能和我一起进步!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/768089
推荐阅读
相关标签