赞
踩
Eigen常用矩阵分解以及求解线性方程组方法 浅析
关于矩阵分解的理论知识,可参考一下博客:
我只是简单整理一下。
一. 矩阵分解:
矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decompostion)。
三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵 或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求 反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。
MATLAB以lu函数来执行lu分解法, 其语法为[L,U]=lu(A)。
QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。
MATLAB以qr函数来执行QR分解法, 其语法为[Q,R]=qr(A)。
奇异值分解 (singular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V分别代表两个正交矩阵,而S代表一对角矩阵。 和QR分解法相同, 原矩阵A不必为正方矩阵。使用SVD分解法的用途是解最小平方误差法和数据压缩。
MATLAB以svd函数来执行svd分解法, 其语法为[S,V,D]=svd(A)。
A=LL^T
Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也是大于零的(LU三角分解法的变形)。
若A为一对称矩阵且其任意一k阶主子阵均不为零,则A有如下惟一的分解形式:
A=LDL^T
其中L为一下三角形单位矩阵(即主对角线元素皆为1),D为一对角矩阵(只在主对角线上有元素,其余皆为零),L^T为L的转置矩阵。LDLT分解法实际上是Cholesky分解法的改进,因为Cholesky分解法虽然不需要选主元&#
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。