赞
踩
https://github.com/hitgub123/rl
ratio = pi_prob / (oldpi_prob + 1e-5),表示真实选择的行为的在两个概率分布下概率的比值。更新模型参数时,保证该比值在一定范围内。
import tensorflow as tf from tensorflow import keras from keras.layers import * import numpy as np import gym np.random.seed(1) tf.random.set_seed(1) EP_MAX = 1000 EP_LEN = 500 GAMMA = 0.9 # reward discount factor A_LR = 0.0001 # learning rate for actor C_LR = 0.0001 # learning rate for critic UPDATE_STEP = 15 # loop update operation n-steps EPSILON = 0.2 # for clipping surrogate objective GAME = 'CartPole-v0' env = gym.make(GAME).unwrapped env.seed(1) S_DIM = env.observation_space.shape[0] A_DIM = env.action_space.n print(S_DIM, A_DIM) class PPO(object): def __init__(self): self.opt_a = tf.compat.v1.train.AdamOptimizer(A_LR) self.opt_c = tf.compat.v1.train.AdamOptimizer(C_LR) self.model_a = self._build_anet(trainable=True) self.model_a_old = self._build_anet(trainable=False) self.model_c = self._build_cnet() def _build_anet(self, trainable=True): tfs_a = Input([S_DIM], ) l1 = Dense(200, 'relu', trainable=trainable)(tfs_a) a_prob = Dense(A_DIM, 'softmax', trainable=trainable)(l1) model_a = keras.models.Model(inputs=tfs_a, outputs=a_prob) return model_a def _build_cnet(self): tfs_c = Input([S_DIM], ) l1 = Dense(200, 'relu')(tfs_c) v = Dense(1)(l1) model_c = keras.models.Model(inputs=tfs_c, outputs=v) model_c.compile(optimizer=self.opt_c, loss='mse') return model_c def update(self, s, a, r): self.model_a_old.set_weights(self.model_a.get_weights()) v = self.get_v(s) adv = r - v oldpi = self.model_a_old(s) for i in range(UPDATE_STEP): with tf.GradientTape() as tape: pi = self.model_a(s) # xx=tf.shape(a)[0] # xxx=tf.range(xx, dtype=tf.int32) a_indices = tf.stack([tf.range(tf.shape(a)[0], dtype=tf.int32), a], axis=1) pi_prob = tf.gather_nd(params=pi, indices=a_indices) oldpi_prob = tf.gather_nd(params=oldpi, indices=a_indices) ratio = pi_prob / (oldpi_prob + 1e-5) surr = ratio * adv x2 = tf.clip_by_value(ratio, 1. - EPSILON, 1. + EPSILON) * adv x3 = tf.minimum(surr, x2) aloss = -tf.reduce_mean(x3) a_grads = tape.gradient(aloss, self.model_a.trainable_weights) a_grads_and_vars = zip(a_grads, self.model_a.trainable_weights) self.opt_a.apply_gradients(a_grads_and_vars) self.model_c.fit(s, r, verbose=0, shuffle=False,epochs=UPDATE_STEP) def choose_action(self, s): s = s[np.newaxis, :] prob_weights = self.model_a(s)[0].numpy() action = np.random.choice(len(prob_weights), p=prob_weights) return action def get_v(self, s): s = s.reshape(-1, S_DIM) v = self.model_c(s) return v if __name__ == '__main__': ppo = PPO() GLOBAL_EP = 0 GLOBAL_RUNNING_R = [] render = False for _ in range(EP_MAX): s = env.reset() ep_r = 0 buffer_s, buffer_a, buffer_r = [], [], [] # clear history buffer, use new policy to collect data for t in range(EP_LEN): if render: env.render() a = ppo.choose_action(s) s_, r, done, _ = env.step(a) if done: r = -10 buffer_s.append(s) buffer_a.append(a) buffer_r.append(r - 1) # 0 for not down, -11 for down. Reward engineering s = s_ ep_r += r if t == EP_LEN - 1 or done: if done: v_s_ = 0 # end of episode else: v_s_ = ppo.get_v(s_)[0, 0] discounted_r = [] # compute discounted reward for r in buffer_r[::-1]: v_s_ = r + GAMMA * v_s_ discounted_r.append(v_s_) discounted_r.reverse() bs, ba, br = np.vstack(buffer_s), np.vstack(buffer_a).ravel(), np.array(discounted_r)[:, None] ppo.update(bs, ba, br) break if len(GLOBAL_RUNNING_R) == 0: GLOBAL_RUNNING_R.append(ep_r) else: GLOBAL_RUNNING_R.append(GLOBAL_RUNNING_R[-1] * 0.9 + ep_r * 0.1) GLOBAL_EP += 1 print(GLOBAL_EP, '|Ep_r: %.2f' % ep_r) if ep_r > 180: render = True
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。