赞
踩
对于一幅由物理过程产生的图像f(x,y),可以表示为照射分量i(x,y)和反射分量r(x,y)的乘积。0<i(x,y)<∞,0<r(x,y)<1。i(x,y)描述景物的照明,变化缓慢,处于低频成分。r(x,y)描述景物的细节,变化较快,处于高频成分。
因为该性质是乘性的,所以不能直接使用傅里叶变换对i(x,y)和r(x,y)进行控制,因此可以先对f(x,y)取对数,分离i(x,y)和r(x,y)。令z(x,y) = ln f(x,y) = ln i(x,y) + ln r(x,y)。在这个过程中,由于f(x,y)的取值范围为[0, L-1],为了避免出现ln(0)的情况,故采用ln ( f(x,y) + 1 ) 来计算。
然后取傅里叶变换,得到 Z(u,v) = Fi(u,v) + Fr(u,v)。
然后使用一个滤波器,对Z(u,v)进行滤波,有 S(u,v) = H(u,v) Z(u,v) = H(u,v)Fi(u,v) + H(u,v)Fr(u,v)。
滤波后,进行反傅里叶变换,有 s(x, y) = IDFT( S(u,v) )。
最后,反对数(取指数),得到最后处理后的图像。g(x,y) = exp^(s(x,y)) = i0(x,y)+r0(x,y)。由于我们之前使用ln ( f(x,y)+1),因此此处使用exp^(s(x,y)) - 1。 i0(x,y)和r0(x,y)分别是处理后图像的照射分量和入射分量。
import os import cv2 from PIL import Image import numpy as np def homomorphic_filter(src, d0=10, r1=0.5, rh=2, c=4, h=2.0, l=0.5): gray = src.copy() if len(src.shape) > 2: gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) gray = np.float64(gray) rows, cols = gray.shape gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_fftshift = np.zeros_like(gray_fftshift) M, N = np.meshgrid(np.arange(-cols // 2, cols // 2), np.arange(-rows//2, rows//2)) D = np.sqrt(M ** 2 + N ** 2) Z = (rh - r1) * (1 - np.exp(-c * (D ** 2 / d0 ** 2))) + r1 dst_fftshift = Z * gray_fftshift dst_fftshift = (h - l) * dst_fftshift + l dst_ifftshift = np.fft.ifftshift(dst_fftshift) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.real(dst_ifft) dst = np.uint8(np.clip(dst, 0, 255)) return dst path = "img.bmp" if os.path.isfile(path): print("path {} is existence;".format(path)) img = Image.open(path) Img = img.convert('L') img = np.array(img) print(img, img.shape) img_new = homomorphic_filter(img) print("new img shape is {}".format(img_new.shape)) cv2.imwrite("2.png", img_new)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。