当前位置:   article > 正文

RabbitMq学习_系统学习rabbitmq

系统学习rabbitmq

1. 认识MQ

1.1.同步和异步通讯

微服务之间的通讯有同步和异步两种方式:

同步通讯:就像是打电话,需要实时的响应。

异步通讯:就像是发邮件,不需要马上就响应。

两种方式各有优劣:

打电话可以立即得到对方的响应,但是你不能同时和多个人同时通话,而发邮件可以同时给多个人发,但是响应会延迟。

1.1.1.同步通讯

在学习springcloud的时候,微服务之间的调用通过feign调用,这种方式就是同步通讯,虽然可以实时得到结果,但是存在下面的问题:

  1. 耦合度高:每次加入新的需求,就要修改原来的代码
  2. 性能下降:调用者需要等待服务提供者响应,如果调用链过长则影响性能。
  3. 资源浪费:调用链中的每个服务在等待响应过程中,不能释放请求占用的资源,在高并发的场景下即极度浪费系统资源。
  4. 级联失败:如果服务提供方出现问题,所有调用方都会出现问题。
1.1.2.异步通讯

异步通讯则可以避免上面的问题:

    以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓

库分配响应的库存并准备发货。在事件模式中,支付服务是事件发布者,在支付完成后只需要发布一个支付成功的

事件,事件中带上订单id。订单服务和物流服务是事件订阅者,订阅支付成功的事件,监听到事件后完成自己业务

即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件

到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
在这里插入图片描述
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议

一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速
  • 故障隔离:服务没有直接调用,不存在级联失败问题
  • 调用间没有阻塞,不会造成无效的资源占用
  • 耦合度极低,每个服务都可以灵活插拔,可替换
  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能
1.2.技术对比

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

2.快速入门

2.1.安装rabbitmq

基于centos7虚拟机中使用docker安装。

 -- 拉取镜像
docker pull rabbitmq:3.8-management

-- 执行命令运行MQ容器
docker run \
 -e RABBITMQ_DEFAULT_USER=root \  
 -e RABBITMQ_DEFAULT_PASS=root \
 -v mq-plugins:/plugins \
 --name mq \
 --hostname mq \
 -p 15672:15672 \
 -p 5672:5672 \
 -d \
 rabbitmq:3.8-management
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

MQ的基本结构:

在这里插入图片描述

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
2.2.RabbitMQ消息模型在这里插入图片描述
2.3.创建demo工程

创建springboot项目,包括三部分:

  • mq-demo:父工程,管理项目依赖
  • publisher:消息的发送者
  • consumer:消息的消费者

在这里插入图片描述

父工程导入依赖:

    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
        <!--AMQP依赖,包含RabbitMQ-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-amqp</artifactId>
        </dependency>
        <!--单元测试-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
    </dependencies>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
2.4.入门案例

简单队列模式的模型图:

在这里插入图片描述

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息
2.4.1.publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel
public class PublisherTest {
    @Test
    public void testSendMessage() throws IOException, TimeoutException {
        // 1.建立连接
        ConnectionFactory factory = new ConnectionFactory();
        // 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
        factory.setHost("172.20.211.110");
        factory.setPort(5672);
        factory.setVirtualHost("/");
        factory.setUsername("root");
        factory.setPassword("root");
        // 1.2.建立连接
        Connection connection = factory.newConnection();

        // 2.创建通道Channel
        Channel channel = connection.createChannel();

        // 3.创建队列
        String queueName = "simple.queue";
        channel.queueDeclare(queueName, false, false, false, null);

        // 4.发送消息
        String message = "hello, rabbitmq!";
        channel.basicPublish("", queueName, null, message.getBytes());
        System.out.println("发送消息成功:【" + message + "】");

        // 5.关闭通道和连接
        channel.close();
        connection.close();

    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
2.4.2.consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息
public class ConsumerTest {

    public static void main(String[] args) throws IOException, TimeoutException {
        // 1.建立连接
        ConnectionFactory factory = new ConnectionFactory();
        // 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
        factory.setHost("172.20.211.110");
        factory.setPort(5672);
        factory.setVirtualHost("/");
        factory.setUsername("root");
        factory.setPassword("root");
        // 1.2.建立连接
        Connection connection = factory.newConnection();

        // 2.创建通道Channel
        Channel channel = connection.createChannel();

        // 3.创建队列
        String queueName = "simple.queue";
        channel.queueDeclare(queueName, false, false, false, null);

        // 4.订阅消息
        channel.basicConsume(queueName, true, new DefaultConsumer(channel){
            @Override
            public void handleDelivery(String consumerTag, Envelope envelope,
                                       AMQP.BasicProperties properties, byte[] body) throws IOException {
                // 5.处理消息
                String message = new String(body);
                System.out.println("接收到消息:【" + message + "】");
            }
        });
        System.out.println("等待接收消息。。。。");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

代码执行顺序:
先执行publisher发送消息,再执行consumer消费消息

执行结果:

在这里插入图片描述

3.SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息
3.1.Basic Queue 简单队列模型

在父工程引入依赖:

<!--AMQP依赖,包含RabbitMQ-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
3.1.1.消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:
  rabbitmq:
    host: 172.20.211.110
    port: 5672
    virtual-host: /
    username: root
    password: root
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @Test
    public void testSimpleQueue() {
        // 队列名称
        String queueName = "simple.queue";
        // 消息
        String message = "hello, spring amqp!";
        // 发送消息
        rabbitTemplate.convertAndSend(queueName, message);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
3.1.2.消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:
  rabbitmq:
    host: 172.20.211.110 # 主机名
    port: 5672 # 端口
    virtual-host: / # 虚拟主机
    username: root # 用户名
    password: root # 密码
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

然后在consumer服务的cn.itcast.mq.listener包中新建一个类SpringRabbitListener,代码如下:

@Component
public class SpringRabbitListener {

    @RabbitListener(queues = "simple.queue")
    public void listenSimpleQueueMessage(String msg) throws InterruptedException {
        System.out.println("spring 消费者接收到消息:【" + msg + "】");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

结果:

在这里插入图片描述

3.2.WorkQueue

Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

在这里插入图片描述
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

3.2.1.消息发送

循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

/**
     * workQueue
     * 向队列中不停发送消息,模拟消息堆积。
     */
@Test
public void testWorkQueue() throws InterruptedException {
    // 队列名称
    String queueName = "simple.queue";
    // 消息
    String message = "hello, message_";
    for (int i = 0; i < 50; i++) {
        // 发送消息
        rabbitTemplate.convertAndSend(queueName, message + i);
        Thread.sleep(20);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
3.2.2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
    System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(20);
}

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
    System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(200);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

测试:

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

3.2.3.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:
  rabbitmq:
    host: 172.20.211.110 # 主机名
    port: 5672 # 端口
    virtual-host: / # 虚拟主机
    username: root # 用户名
    password: root # 密码
    listener:
      simple:
        prefetch: 1 #每次只能获取一条消息,处理完成后才能获取下一条消息
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
3.2.4.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量
3.3.发布/订阅

在这里插入图片描述
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout:广播,将消息交给所有绑定到交换机的队列
    • Direct:定向,把消息交给符合指定routing key 的队列
    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
  • Consumer:消费者,与以前一样,订阅队列,没有变化
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

3.4.Fanout

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

在这里插入图片描述

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个交换机 czy.fanout,类型是Fanout
  • 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机czy.fanout
    在这里插入图片描述
3.4.1.声明队列和交换机

在consumer中创建一个类,声明队列和交换机:

@Configuration
public class FanoutConfig {

    /**
     * 声明交换机
     */
    @Bean
    public FanoutExchange fanoutExchange(){
        return new FanoutExchange("czy.fanout");
    }

    /**
     * 第一个队列
     */
    @Bean
    public Queue fanoutQueue1(){
        return new Queue("fanout.queue1");
    }
    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue1Exchange(Queue fanoutQueue1,FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
    }
    /**
     * 第二个队列
     */
    @Bean
    public Queue fanoutQueue2(){
        return new Queue("fanout.queue2");
    }
    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue2Exchange(Queue fanoutQueue2,FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
3.4.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

   /**
     * fanoutExchange
     *
     */
    @Test
    public void testFanoutExchange(){
        //交换机名称
        String exchangeName = "czy.fanout";
        //消息
        String message = "czy.fanout,hello";
        rabbitTemplate.convertAndSend(exchangeName,"",message);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
3.4.3.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {
    System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}

@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {
    System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
3.4.4.总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

声明队列、交换机、绑定关系的Bean是什么?

  • Queue
  • FanoutExchange
  • Binding
3.5.Direct

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在这里插入图片描述
在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息
3.5.1.基于注解声明队列和交换机

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

    @RabbitListener(
            bindings = @QueueBinding(
                    value = @Queue(name = "direct.queue1"),
                    exchange = @Exchange(name = "czy.direct",type = ExchangeTypes.DIRECT),
                    key = {"red","blue"}
            )
    )
    public void listenDirectQueue1(String msg){
        System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    }

    @RabbitListener(
            bindings = @QueueBinding(
                    value = @Queue(name = "direct.queue2"),
                    exchange = @Exchange(name = "czy.direct",type = ExchangeTypes.DIRECT),
                    key = {"red","yellow"}
            )
    )
    public void listenDirectQueue2(String msg){
        System.out.println("消费者2接收到消息:【" + msg + "】" + LocalTime.now());
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
3.5.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

 @Test
    public void testSendDirectExchange() {
        // 交换机名称
        String exchangeName = "czy.direct";
        // 消息
        String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
        // 发送消息
        rabbitTemplate.convertAndSend(exchangeName, "red", message);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
3.5.3.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据routingKey判断路由给哪个队列
  • 如果多个队列具有相同的routingkey,则与Fanout功能类似
3.6.Topic
3.6.1.说明

Topic类型的交换机与Direct相比,都是根据routingkey把消息路由到不同的队列,只不过topic类型的交换机可以让队列在绑定routindkey的时候使用通配符。

routingkey一般都是由一个或者多个单词组成,多个单词之间以“,”分割,例如:czy.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

在这里插入图片描述
解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue2:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news
3.6.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/**
     * topicExchange
     */
@Test
public void testSendTopicExchange() {
    // 交换机名称
    String exchangeName = "czy.topic";
    // 消息
    String message = "喜报!孙悟空大战哥斯拉,胜!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
3.6.3.消息接收

在consumer服务的SpringRabbitListener中添加方法:

    @RabbitListener(
            bindings = @QueueBinding(
                    value = @Queue(name = "topic.queue1"),
                    exchange = @Exchange(name = "czy.topic",type = ExchangeTypes.TOPIC),
                    key = "#.news"
            )
    )
    public void listenTopicQueue1(String msg){
        System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    }

    @RabbitListener(
            bindings = @QueueBinding(
                    value = @Queue(name = "topic.queue2"),
                    exchange = @Exchange(name = "czy.topic",type = ExchangeTypes.TOPIC),
                    key = "china.#"
            )
    )
    public void listenTopicQueue2(String msg){
        System.out.println("消费者2接收到消息:【" + msg + "】" + LocalTime.now());
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
3.6.4.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收消息的routingkey必须是多个单词且以"."分割
  • Topic交换机与队列绑定时的routingkey可以使用通配符
  • #:代表0个或多个词
  • *:代表一个词
3.7.消息转换器

Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

在这里插入图片描述

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差
3.7.1.测试默认转换器

修改消息发送的代码,发送一个Map对象:

	@Test
    public void testSendMap() throws InterruptedException {
        // 准备消息
        Map<String,Object> msg = new HashMap<>();
        msg.put("name", "Jack");
        msg.put("age", 21);
        // 发送消息
        rabbitTemplate.convertAndSend("simple.queue", msg);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

停止consumer服务

在rabbitmq可视化界面查看消息:

在这里插入图片描述

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency>
    <groupId>com.fasterxml.jackson.dataformat</groupId>
    <artifactId>jackson-dataformat-xml</artifactId>
    <version>2.9.10</version>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){
    return new Jackson2JsonMessageConverter();
}
  • 1
  • 2
  • 3
  • 4

再次查看rabbitmq可视化界面的消息信息:

在这里插入图片描述

高级篇

消息队列在使用过程中,面临着很多实际问题需要思考:

  1. 消息可靠性:如何确保发送的消息至少被消费一次
  2. 延迟消息:如何实现消息的延迟投递
  3. 高可用:如何避免单点的MQ故障而导致不可用
  4. 消息堆积:如何解决数百万消息堆积,无法及时消费

1. 消息可靠性

消息从发送,到消息被接收,中间会经历多个过程:

在这里插入图片描述
其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  1. 发送消息时丢失:
  • 生产者发送消息未到达交换机
  • 消息到达交换机后未到达队列
  1. MQ宕机,队列将消息丢失
  2. 消费者接收到消息为消费就宕机

针对这些问题,RabbitMq分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制
1.1.生产者消息确认

RabbitMq提供了生产者确认机制来避免消息发送到Mq过程中丢失。这种机制必须给每个消息一个唯一的id,消息发送到Mq以后,会返回一个结果给生产者,表示消息是否处理成功。

返回结果有两种形式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。
1.1.1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:
  rabbitmq:
    host: 172.20.211.110 # rabbitMQ的ip地址
    port: 5672 # 端口
    username: root
    password: root
    virtual-host: /
    publisher-confirm-type: correlated 
    publisher-returns: true 
    template:
      mandatory: true 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple:同步等待confirm结果,直到超时
    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息
1.1.2.定义ReturnConfirm 回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {
    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        // 获取RabbitTemplate
        RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);
        // 设置ReturnCallback
        rabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {
            // 投递失败,记录日志
            log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",
                    replyCode, replyText, exchange, routingKey, message.toString());
            // 如果有业务需要,可以重发消息
        });

        rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
            /**
             * @param correlationData  自定义的数据
             * @param ack  是否确认
             * @param cause  原因
             */
            @Override
            public void confirm(CorrelationData correlationData, boolean ack, String cause) {
                    if(ack){
                        // 3.1.ack,消息成功
                        log.debug("消息发送成功, ID:{}", correlationData.getId());
                    }else{
                        // 3.2.nack,消息失败
                        log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), cause);
                    }
            }
        });
    }
    
     @Bean
    public DirectExchange simpleExchange(){
        // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
        return new DirectExchange("simple.direct", false, false);
    }
    @Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",false);
    }
    @Bean
    public Binding binding(){
        return BindingBuilder.bind(simpleQueue()).to(simpleExchange()).with("simple");
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
1.1.3.发送消息测试

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。
在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

public void testSendMessage2SimpleQueue() throws InterruptedException {
    // 1.消息体
    String message = "hello, spring amqp!";
    // 2.全局唯一的消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 4.发送消息
    rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);
    // 休眠一会儿,等待ack回执
    Thread.sleep(2000);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

测试

  • 设置不存在的交换机尝试发送 交换机: task.direct 路由: task
  • 结果: 发送确认回调返回false消息没有正确发送到MQ中
  • ​ return回调未触发

在这里插入图片描述

  • 设置存在的交换机,不存在的路由尝试发送 交换机: simple.direct 路由: task
  • 结果: 发送确认回调返回true消息已经发送到MQ中
  • ​ return回调触发,返回了消息,并提示路由错误

在这里插入图片描述

  • 设置正确的交换机,正确的路由 交换机: simple.direct 路由: simple
  • 结果: 发送确认回调返回true消息已经发送到MQ中
  • ​ return回调未触发

在这里插入图片描述

结论:

通过发送确认 和 消息返还机制可以确保消息 一定能够投递到指定的队列中,如果消息没有投递成功 或返还了

也可以通过定时重新投递的方式进行补偿

1.2.消息持久化

生产者确认可以确保消息投递到mq的队列中,但是消息发送到mq以后,如果突然宕机,也可能导致消息丢失,要想确保消息在mq中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化
1.2.1.交换机持久化

rabbitmq中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){
    // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
    return new DirectExchange("simple.direct", true, false);
}
  • 1
  • 2
  • 3
  • 4
  • 5

事实上,默认情况下,由springAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:
在这里插入图片描述

1.2.2.队列持久化

RabbitMQ中队列如果设置成非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",true);
    }
  • 1
  • 2
  • 3
  • 4

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

在这里插入图片描述

1.2.3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

在这里插入图片描述
默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

	@Test
    public void testSendMessage2SimpleQueue() throws InterruptedException {
        String routingKey = "simple";
        String message = "hello, spring amqp!";
        // 自定义数据
        CorrelationData data = new CorrelationData(UUID.randomUUID().toString());
        // 发送消息
        rabbitTemplate.convertAndSend("simple.direct", routingKey, message, new MessagePostProcessor() {
            // 后置处理消息
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                // 设置消息的持久化方式
                message.getMessageProperties().setDeliveryMode(MessageDeliveryMode.NON_PERSISTENT);
                return message;
            }
        },data);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立即删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者
  • 2)消费者获取消息后,返回ACK给RabbitMQ
  • 3)RabbitMQ删除消息
  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

SpringAMQP允许配置三种确认模式:

  • manual:手动ack,需要在业务代码结束后,调用api发送ack
  • auto:自动ack,由spring检测listener代码是否出现异常,没有异常则返回ack,抛出异常则返回nack
  • none:关闭ack,MQ假定消费者获取信息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式下,出现异常返回nack,消息回滚到mq,没有异常,返回ack
  • manual模式下,自己根据业务判断,什么时候ack

一般情况下,使用默认的auto模式就行了。

1.3.1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: none # 关闭ack
  • 1
  • 2
  • 3
  • 4
  • 5

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {
    log.info("消费者接收到simple.queue的消息:【{}】", msg);
    // 模拟异常
    System.out.println(1 / 0);
    log.debug("消息处理完成!");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2.演示auto模式

再次把确认机制修改为auto:

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: auto 
  • 1
  • 2
  • 3
  • 4
  • 5

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

在这里插入图片描述

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

在这里插入图片描述

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

在这里插入图片描述
怎么办呢?

1.4.1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:
  rabbitmq:
    listener:
      simple:
        retry:
          enabled: true # 开启消费者失败重试
          initial-interval: 1000ms # 初识的失败等待时长为1秒
          multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
          max-attempts: 3 # 最大重试次数
          stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃
1.4.2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试机制之后,重试次数耗尽,如果消息仍然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){
    return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
    return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
    return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
    return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
  • 1
  • 2
  • 3
  • 4
1.5.总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2.死信交换机

2.1.初识死信交换机
2.1.1.什么是死信交换机

什么是死信?

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机。

队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

在这里插入图片描述

2.1.2.利用死信交换机接收死信

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

在consumer中CommonConfig 修改消息策略

   	// 修改 失败消息策略
	@Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
		//  return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
        return new RejectAndDontRequeueRecoverer();
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

在这里插入图片描述

在producer服务CommonConfig中,定义一组死信交换机、死信队列:

	@Bean
    public Queue simpleQueue(){
        return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化
                .deadLetterExchange("dl.direct") // 指定死信交换机
                .build();
    }
    // 声明死信交换机 dl.direct
    @Bean
    public DirectExchange dlExchange(){
        return new DirectExchange("dl.direct", true, false);
    }
    // 声明存储死信的队列 dl.queue
    @Bean
    public Queue dlQueue(){
        return new Queue("dl.queue", true);
    }
    // 将死信队列 与 死信交换机绑定
    @Bean
    public Binding dlBinding(){
        return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("dl");
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
### 2.1.3.总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。
2.2.TTL

一个队列中的消息如果超时未消费,则会变成死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

在这里插入图片描述

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "dl.ttl.queue", durable = "true"),
    exchange = @Exchange(name = "dl.ttl.direct"),
    key = "ttl"
))
public void listenDlQueue(String msg){
    log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
2.2.2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){
    return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化
        .ttl(10000) // 设置队列的超时时间,10秒
        .deadLetterExchange("dl.ttl.direct") // 指定死信交换机
        .build();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){
    return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){
    return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {
    // 创建消息
    String message = "hello, ttl queue";
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
    // 记录日志
    log.debug("发送消息成功");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/939089
推荐阅读
相关标签
  

闽ICP备14008679号