赞
踩
在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算。
以下是一个使用TensorFlow.NET的示例:
- using System;
- using TensorFlow;
- using TensorFlow.Image;
-
- class Program
- {
- static void Main(string[] args)
- {
- // 载入模型
- var model = new ResNet50();
-
- // 加载图像
- var image1 = ImageUtil.LoadTensorFromImageFile("image1.jpg");
- var image2 = ImageUtil.LoadTensorFromImageFile("image2.jpg");
-
- // 提取特征
- var feature1 = ExtractFeatures(image1, model);
- var feature2 = ExtractFeatures(image2, model);
-
- // 计算相似度
- var similarityScore = CalculateSimilarity(feature1, feature2);
- Console.WriteLine("图片相似度: " + similarityScore);
- }
-
- static TFTensor ExtractFeatures(TFTensor image, ResNet50 model)
- {
- // 预处理图像
- var processedImage = ImageUtil.ResizeAndCropCenter(image, model.InputHeight, model.InputWidth);
- processedImage = ImageUtil.Normalize(image, mean: model.Mean, std: model.Std);
-
- // 转换图像形状以匹配模型输入
- var reshapedImage = processedImage.Reshape(new long[] { 1, model.InputHeight, model.InputWidth, 3 });
-
- // 获取特征
- var features = model.Predict(reshapedImage);
-
- return features;
- }
-
- static double CalculateSimilarity(TFTensor feature1, TFTensor feature2)
- {
- // 使用余弦相似度计算特征之间的相似度
- var similarity = CosineSimilarity(feature1.ToArray<float>(), feature2.ToArray<float>());
- return similarity;
- }
-
- static double CosineSimilarity(float[] vector1, float[] vector2)
- {
- double dotProduct = 0.0;
- double magnitude1 = 0.0;
- double magnitude2 = 0.0;
- for (int i = 0; i < vector1.Length; i++)
- {
- dotProduct += vector1[i] * vector2[i];
- magnitude1 += Math.Pow(vector1[i], 2);
- magnitude2 += Math.Pow(vector2[i], 2);
- }
- magnitude1 = Math.Sqrt(magnitude1);
- magnitude2 = Math.Sqrt(magnitude2);
- return dotProduct / (magnitude1 * magnitude2);
- }
- }

在这个示例中,我们使用了TensorFlow.NET库中的ResNet50模型来提取图像的特征表示。我们首先载入模型,然后加载图片并对其进行预处理,接着提取特征,并最后使用余弦相似度计算图片的相似度。
请确保在项目中包含了TensorFlow.NET的引用,并根据实际情况修改图片的路径以及模型的输入参数。
使用Python实现了同样的逻辑,可以对比 参考
- import numpy as np
- from tensorflow.keras.preprocessing import image
- from tensorflow.keras.applications import ResNet50
- from tensorflow.keras.applications.resnet50 import preprocess_input
- from sklearn.metrics.pairwise import cosine_similarity
-
- # 加载预训练的ResNet50模型
- model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
-
- # 加载并预处理图像
- def preprocess_image(img_path):
- img = image.load_img(img_path, target_size=(224, 224))
- x = image.img_to_array(img)
- x = np.expand_dims(x, axis=0)
- x = preprocess_input(x)
- return x
-
- # 提取图像的特征向量
- def extract_features(img_path, model):
- img = preprocess_image(img_path)
- features = model.predict(img)
- return features.flatten()
-
- # 图像路径
- image1_path = '/Users/AI/pythonsamples-main/ML/CNN(卷积神经网络)/ImageVector/houge.jpg'
- image2_path = '/Users/AI/pythonsamples-main/ML/CNN(卷积神经网络)/ImageVector/zhipiao.jpg'
-
- # 提取特征向量
- features1 = extract_features(image1_path, model)
- features2 = extract_features(image2_path, model)
-
- # 计算余弦相似度
- similarity = cosine_similarity([features1], [features2])[0][0]
- print("相似度:", similarity)

结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。