赞
踩
MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
SHOW GLOBAL STATUS LIKE 'Com_______';
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
查看慢日志文件中记录的信息:/var/lib/mysql/localhost-slow.log
。
show profiles
能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling
参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling ;
可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:
SET profiling = 1;
案例:执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
-- 查看每一条SQL的耗时基本情况
show profiles;
-- 查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
-- 查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
查看每一条SQL的耗时情况:
查看指定SQL各个阶段的耗时情况 :
EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
Explain 执行计划中各个字段的含义:
字段 | 含义 |
---|---|
id | select查询的序列号,表示查询中执行select子句或者是操作表的顺序 (id相同,执行顺序从上到下;id不同,值越大,越先执行)。 |
select_type | 表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接 或者子查询)、PRIMARY(主查询,即外层的查询)、 UNION(UNION 中的第二个或者后面的查询语句)、 SUBQUERY(SELECT/WHERE之后包含了子查询)等 |
type | 表示连接类型,性能由好到差的连接类型为NULL、system、const、 eq_ref、ref、range、 index、all 。 |
possible_key | 显示可能应用在这张表上的索引,一个或多个。 |
key | 实际使用的索引,如果为NULL,则没有使用索引。 |
key_len | 表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长 度,在不损失精确性的前提下, 长度越短越好 。 |
rows | MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值, 可能并不总是准确的。 |
filtered | 表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。 |
使用一条SQL语句插入多条数据而不是多条SQL语句:
在 MySQL 中,插入多条数据有 2 种方式。第一种是使用一个 INSERT 语句插入多条数据。INSERT 语句的情形如下:
INSERT INTO items(name,city,price,number,picture) VALUES ('耐克运动鞋','广州',500,1000,'001.jpg'),('耐克运动鞋 2','广州 2',500,1000,'002.jpg');
第二种是一个 INSERT 语句只插入一条数据,执行多个 INSERT 语句来插入多条数据。INSERT 语句的情形如下:
INSERT INTO items(name,city,price,number,picture) VALUES('耐克运动鞋','广州',500,1000,'001.jpg');
INSERT INTO items(name,city,price,number,picture) VALUES('耐克运动鞋 2','广州',500,1000,'002.jpg');
一次性插入多条数据和多次插入数据所耗费的时间是不一样的。第一种方式减少了与数据库之间的连接等操作,其速度比第二种方式要快一些。所以插入大量数据时,建议使用第一种方法。
手动提交事务:MySQL 的事务自动提交模式默认是开启的,其对 MySQL 的性能也有一定得影响。比如你插入了 1000 条数据,MySQL 就会提交 1000 次,这大大影响了插入数据的速度。而如果我们把自动提交关掉,通过程序来控制,只要一次提交就可以了。
start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;
主键顺序插入,性能要高于乱序插入:
主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89
如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。可以执行如下指令,将数据脚本文件中的数据加载到表结构中:
-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields
terminated by ',' lines terminated by '\n' ;
MySQL的排序,有两种方式:
Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。
以上两种Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。
优化原则:
在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。
优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引+子查询形式进行优化。
select * from tb_sku t , (select id from tb_sku order by id limit 2000000,10) a where t.id = a.id;
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加,最后返回累计值。
用法:count(*)、count(主键)、count(字段)、count(数字):
count用 法 | 含义 |
---|---|
count(主 键) | InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。 服务层拿到主键后,直接按行进行累加(主键不可能为null) |
count(字 段) | 没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出 来,返回给服务层,服务层判断是否为null,不为null,计数累加。 有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返 回给服务层,直接按行进行累加。 |
count(数 字) | InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1” 进去,直接按行进行累加。 |
count(*) | InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接 按行进行累加。 |
按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(星),所以尽量使用 count(星)。
尽量使用索引作为修改的限制条件,这样MySQL的锁是行锁,性能更高,否则行锁将升级为表锁。
案例:表中有两个字段分别是id
和name
,其中只有id为主键索引。
行锁:
update course set name = 'javaEE' where id = 1 ;
表锁:
update course set name = 'SpringBoot' where name = 'PHP' ;
Mysql 性能调优方法可以从四个方面来说,分别是:表结构与索引、SQL 语句优化、Mysql 参数优化、硬件及系统配置。
Buffer_pool
的大小,建议占总内存的 70%左右。设置刷盘策略,平衡好数据安全性和性能的关系等。char
比varchar
性能更高、tinyint
比int
占据空间更小。如果执行 SQL 响应比较慢,我觉得可能有以下 4 个原因:
索引失效:首先,可以打开 MySQL 的慢查询日志,收集一段时间的慢查询日志内容,然后找出耗时最长的 SQL 语句,对这些 SQL 语句进行分析。 比如可以利用执行计划 explain 去查看 SQL 是否有命中索引。如果发现慢查询的 SQL 没有命中索引,可以尝试去优化这些 SQL 语句,保证 SQL 走索引执行。如果 SQL 结构没有办法优化的话,可以考虑在表上再添加对应的索引。
单表数据量数据过多,导致查询瓶颈的情况。即使 SQL 语句走了索引,表现性能也不会特别好。这个时候我们需要考虑对表进行切分。表切分规则一般分为两种,一种是水平切分,一种是垂直切分。
水平切分:把一张数据行数达到千万级别的大表,按照业务主键切分为多张小表,这些小表可能达到 100 张甚至 1000 张。
垂直切分:将一张单表中的多个列,按照业务逻辑把关联性比较大的列放到同一张表中去。
网络原因或者机器负载过高的情况,我们可以进行读写分离:比如 MySQL 支持一主多从的分布式部署,我们可以将主库只用来处理写数据的操作,而多个从库只用来处理读操作。在流量比较大的场景中,可以增加从库来提高数据库的负载能力,从而提升数据库的总体性能。
热点数据导致单点负载不均衡的情况:除了对数据库本身的调整以外,还可以增加缓存。将查询比较频繁的热点数据预存到缓存当中,比如 Redis、MongoDB、ES 等,以此来缓解数据的压力,从而提高数据库的响应速度。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。