当前位置:   article > 正文

基于halcon—缺陷检测常用方法与示例总结_halcon缺陷检测

halcon缺陷检测

摘要

缺陷检测是视觉需求中难度最大一类需求,主要是其稳定性和精度的保证。首先常见缺陷:凹凸、污点瑕疵、划痕、裂缝、探伤等。 缺陷检测算法不同于尺寸、二维码、OCR等算法。后者应用场景比较单一,基本都是套用一些成熟的算子,所以门槛较低,比较容易做成标准化的工具。而缺陷检测极具行业特点,不同行业的缺陷算法迥然不同。随着缺陷检测要求的提高,机器学习和深度学习也成了缺陷领域一个不可或缺的技术难点。

  • 传统算法检测缺陷:调试难度大,容易在检测不稳定情况下反复调参,且复杂缺陷误测多,兼容性差        
  • 机器学习检测缺陷:一般使用类似MLP的一些单层神经网络,对缺陷特征进行训练分类,该方法需要事先提取出缺陷部分,一般用来与传统分割法搭配使用,达到缺陷检测分类的效果。      
  • 深度学习检测缺陷(打标签):一般需要客户提供大量的缺陷样本,而且缺陷种类越多、特征越不明显,需要的缺陷样本就越大。其次,打标签过程很难做到自动,需要手动辅助框出缺陷位置,工作量非常大。总结就是训练周期久,训练样本大,如果客户可以提供大量样本,那该方法是首选(半导体行业一般不会出现大量缺陷样品)      
  • 深度学习检测缺陷(迁移学习法):该方法我感觉会成为后面工业领域检测瑕疵的一个大趋势,但是需要一些公司去收集各种行业的缺陷类型图片和训练的网络模型,并共享出来(突然感觉是个商机,就看谁能抓住了),然后我们可以使用迁移学习的方法学习别人训练好的模型。

总的来说,机器视觉中缺陷检测分为一下几种:

  • blob分析+特征
  • 模板匹配(定位)+差分
  • 光度立体
  • 特征训练
  • 测量拟合
  • 频域+空间域结合
  • 深度学习

 频域+空间域结合法

 频域结合空间,其实频域就是用波动观点看世界,看问题角度变了,光经过镜头其实发生的是傅立叶变换,此思想在傅立叶光学上有所阐述,就像光经棱镜分光,而光进入计算机内部,进行了采样和量化,然后我们用函数f(x,y)来表示这些数据描述。图像处理应用傅里叶变换就是将空间域(图像本身)转换至频率域。傅里叶变换可以将一个信号函数,分解一个一个三角函数的线性组合。由于任何周期函数都可以由多个正弦函数构成,那么按照这个思想,图像由f(x,y)来表示,那么这时你就可以拆成多个正弦函数构成,这样每个正弦函数都有一个自己的频率。

关于傅里叶的讲解,可以参考此文章详看:傅里叶分析之掐死教程(完整版)更新于2014.06.06 - 知乎 (zhihu.com)

频率特征是图像的灰度变化特征,低频特征是灰度变化不明显,例如图像整体轮廓,高频特征是图像灰度变化剧烈,如图像边缘和噪声。一个重要的经验结论:低频代表图像整体轮廓,高频代表了图像噪声,中频代表图像边缘、纹理等细节。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/109058
推荐阅读
相关标签