赞
踩
同时推荐一下我的专栏,正在更新最新的YOLOv9改进!
在做深度学习、目标检测的同学来快看一看!
Silence 代码:
- class Silence(nn.Module):
- def __init__(self):
- super(Silence, self).__init__()
- def forward(self, x):
- return x
Silence 模块位于yolov9网络的第一层,从Silence的代码中我们可以看到,YOLOv9的Silence 模块的作用就是返回输入的图片变量,并不包含其余操作。这个操作可以将x保存在网络的结构中,极大的方便双主干(在YOLOv9中是辅助分支)的调用及其他工作。
RepNCSPELAN4代码:
- class RepNCSPELAN4(nn.Module):
- # csp-elan
- def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- self.c = c3//2
- self.cv1 = Conv(c1, c3, 1, 1)
- self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))
- self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
- self.cv4 = Conv(c3+(2*c4), c2, 1, 1)
-
- def forward(self, x):
- y = list(self.cv1(x).chunk(2, 1))
- y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
- return self.cv4(torch.cat(y, 1))
-
- def forward_split(self, x):
- y = list(self.cv1(x).split((self.c, self.c), 1))
- y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
- return self.cv4(torch.cat(y, 1))
RepNCSPELAN4模块是YOLOv9中的特征提取-融合模块。
ADown代码:
- class ADown(nn.Module):
- def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
- super().__init__()
- self.c = c2 // 2
- self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
- self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
-
- def forward(self, x):
- x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
- x1,x2 = x.chunk(2, 1)
- x1 = self.cv1(x1)
- x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
- x2 = self.cv2(x2)
- return torch.cat((x1, x2), 1)
ADown模块是YOLOv9中的下采样模块。
CBLinear代码:
-
- class CBLinear(nn.Module):
- def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): # ch_in, ch_outs, kernel, stride, padding, groups
- super(CBLinear, self).__init__()
- self.c2s = c2s
- self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
-
- def forward(self, x):
- outs = self.conv(x).split(self.c2s, dim=1)
- return outs
CBLinear模块是YOLOv9中的特征提取模块。
- # YOLOv9 backbone
- backbone:
- [
- [-1, 1, Silence, []],
- # conv down
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
- # elan-1 block
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
- # avg-conv down
- [-1, 1, ADown, [256]], # 4-P3/8
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
- # avg-conv down
- [-1, 1, ADown, [512]], # 6-P4/16
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
- # avg-conv down
- [-1, 1, ADown, [512]], # 8-P5/32
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
- ]
-
- # YOLOv9 head
- head:
- [
- # elan-spp block
- [-1, 1, SPPELAN, [512, 256]], # 10
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 7], 1, Concat, [1]], # cat backbone P4
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
- # up-concat merge
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 5], 1, Concat, [1]], # cat backbone P3
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
- # avg-conv-down merge
- [-1, 1, ADown, [256]],
- [[-1, 13], 1, Concat, [1]], # cat head P4
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
- # avg-conv-down merge
- [-1, 1, ADown, [512]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
-
- # multi-level reversible auxiliary branch
-
- # routing
- [5, 1, CBLinear, [[256]]], # 23
- [7, 1, CBLinear, [[256, 512]]], # 24
- [9, 1, CBLinear, [[256, 512, 512]]], # 25
- # conv down
- [0, 1, Conv, [64, 3, 2]], # 26-P1/2
- # conv down
- [-1, 1, Conv, [128, 3, 2]], # 27-P2/4
- # elan-1 block
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
- # avg-conv down fuse
- [-1, 1, ADown, [256]], # 29-P3/8
- [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 32-P4/16
- [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
- # avg-conv down fuse
- [-1, 1, ADown, [512]], # 35-P5/32
- [[25, -1], 1, CBFuse, [[2]]], # 36
- # elan-2 block
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
-
- # detection head
-
- # detect
- [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
- ]
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。