赞
踩
参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py
这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。
"""This module simulates a single-echelon supply chain and calculates inventory profile (along with associated inventory parameters such as on-hand, inventory position, service level, etc.) across time The system follows a reorder point-reorder quantity policy If inventory position <= ROP, an order of a fixed reorder quantity (ROQ) is placed by the facility It is assumed that any unfulfilled order is backordered and is fulfilled whenever the material is available in the inventory. The service level is estimated based on how late the order was fulfilled Demand is assumed to be Normally distributed Lead time is assumed to follow a uniform distribution """ __author__ = 'Anshul Agarwal' import simpy import numpy as np # Stocking facility class class stockingFacility(object): ## ?? why we need to in herit 'object'? # initialize the new facility object def __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime): self.env = env self.on_hand_inventory = initialInv self.inventory_position = initialInv self.ROP = ROP # inventory position self.ROQ = ROQ # fixed order quantity self.meanDemand = meanDemand self.demandStdDev = demandStdDev self.minLeadTime = minLeadTime self.maxLeadTime = maxLeadTime self.totalDemand = 0.0 self.totalBackOrder = 0.0 self.totalLateSales = 0.0 self.serviceLevel = 0.0 env.process(self.runOperation()) # main subroutine for facility operation # it records all stocking metrics for the facility def runOperation(self): while True: yield self.env.timeout(1.0) # demand newly generated demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1)) self.totalDemand += demand # shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量 shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to send self.on_hand_inventory -= shipment # send the shipment to some retailer self.inventory_position -= shipment backorder = demand - shipment # the amount of demand unmet temporarily self.totalBackOrder += backorder self.totalLateSales += max(0.0, backorder) # if the current inventory position is less than ROP, then place an order if self.inventory_position <= 1.01 * self.ROP: # multiply by 1.01 to avoid rounding issues self.env.process(self.ship(self.ROQ)) # why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship' self.inventory_position += self.ROQ # subroutine for a new order placed by the facility def ship(self, orderQty): # recall that we assume the lead time follows an uniform distribution leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1)) yield self.env.timeout(leadTime) # wait for the lead time before delivering # now 'orderQty' goods is received self.on_hand_inventory += orderQty # Simulation module def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime): env = simpy.Environment() # initialize SimPy simulation instance np.random.seed(seedinit) s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime) env.run(until=365) # simulate for 1 year s.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比 return s ######## Main statements to call simulation ######## meanDemand = 500.0 demandStdDev = 100.0 minLeadTime = 7 maxLeadTime = 13 CS = 5000.0 ROQ = 6000.0 ROP = max(CS,ROQ) initialInv = ROP + ROQ # Simulate replications = 100 sL = [] for i in range(replications): nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime) sL.append(nodes.serviceLevel) sLevel = np.array(sL) print("Avg. service level: " + str(np.mean(sLevel))) print("Service level standard deviation: " + str(np.std(sLevel)))
不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,
stockingFacility
中数据self.totalShipped
用于记录从这个仓库发出了多少货;stockingFacility
的方法runOperation
中,当前从该仓库的送出量shipment
的计算方式不再考虑backorder;simulateNetwork
中,计算服务水平(从该仓库的送出量占总需求量的比例)。"""This module simulates a single-echelon supply chain and calculates inventory profile (along with associated inventory parameters such as on-hand, inventory position, service level, etc.) across time The system follows a reorder point-reorder quantity policy If inventory position <= ROP, an order of a fixed reorder quantity (ROQ) is placed by the facility It is assumed that any unfulfilled order is lost The service level is estimated based on how much of the demand was fulfilled Demand is assumed to be Normally distributed Lead time is assumed to follow a uniform distribution """ __author__ = 'Anshul Agarwal' import simpy import numpy as np # Stocking facility class class stockingFacility(object): # initialize the new facility object def __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime): self.env = env self.on_hand_inventory = initialInv self.inventory_position = initialInv self.ROP = ROP self.ROQ = ROQ self.meanDemand = meanDemand self.demandStdDev = demandStdDev self.minLeadTime = minLeadTime self.maxLeadTime = maxLeadTime self.totalDemand = 0.0 self.totalShipped = 0.0 # !! self.serviceLevel = 0.0 env.process(self.runOperation()) # main subroutine for facility operation # it records all stocking metrics for the facility def runOperation(self): while True: yield self.env.timeout(1.0) demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1)) self.totalDemand += demand shipment = min(demand, self.on_hand_inventory) # !! self.totalShipped += shipment self.on_hand_inventory -= shipment self.inventory_position -= shipment if self.inventory_position <= 1.01 * self.ROP: # multiply by 1.01 to avoid rounding issues self.env.process(self.ship(self.ROQ)) self.inventory_position += self.ROQ # subroutine for a new order placed by the facility def ship(self, orderQty): leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1)) yield self.env.timeout(leadTime) # wait for the lead time before delivering self.on_hand_inventory += orderQty # Simulation module def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime): env = simpy.Environment() # initialize SimPy simulation instance np.random.seed(seedinit) s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime) env.run(until=365) # simulate for 1 year s.serviceLevel = s.totalShipped / s.totalDemand # !! return s ######## Main statements to call simulation ######## meanDemand = 500.0 demandStdDev = 100.0 minLeadTime = 7 maxLeadTime = 13 CS = 5000.0 ROQ = 6000.0 ROP = max(CS,ROQ) initialInv = ROP + ROQ # Simulate replications = 100 sL = [] for i in range(replications): nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime) sL.append(nodes.serviceLevel) sLevel = np.array(sL) print("Avg. service level: " + str(np.mean(sLevel))) print("Service level standard deviation: " + str(np.std(sLevel)))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。