当前位置:   article > 正文

深度学习入门(5) - RNN

深度学习入门(5) - RNN

Recurrent Neural Network

Process Sequences!

Sequential processing of non-sequential data

h t = f W ( h t − 1 , x t ) h_t = f_W(h_{t-1},x_t) ht=fW(ht1,xt)

new state is calculated by f on old state and input x t x_t xt

y t = f W y ( h t ) y_t = f_{W_y}(h_t) yt=fWy(ht)

and output is a applying another function f on h_t

same function and the same set of parms are used at every time step

Vanilla RNN

请添加图片描述

Truncated Backpropagation Trough Time

Backpropagation through time takes too much memory for long sequences

Instead, do the backpropagtion in truncated chunks.

Make it feasible to train

LSTM (Long Short Term Memory)

请添加图片描述

一个LSTM很详细的讲解!

https://blog.csdn.net/qian99/article/details/88628383

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/511176
推荐阅读
相关标签
  

闽ICP备14008679号