赞
踩
第一范式:每个列都不可以再拆分。
第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。
第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。
在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。比如性能。事实上我们经常会为了性能而妥协数据库的设计。
存储引擎Storage engine:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。
常用的存储引擎有以下:
Innodb引擎:Innodb引擎提供了对数据库ACID事务的支持。并且还提供了行级锁和外键的约束。它的设计的目标就是处理大数据容量的数据库系统。
MyIASM引擎(原本Mysql的默认引擎) :不提供事务的支持,也不支持行级锁和外键。
MEMORY引擎:所有的数据都在内存中,数据的处理速度快,但是安全性不高。
插入缓冲(insert buffer)
二次写(double write)
自适应哈希索引(ahi)
预读(read ahead)
如果没有特别的需求,使用默认的Innodb即可。
MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。
Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键。比如OA自动化办公系统。
索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。
索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。
更通俗的说,索引就相当于目录。为了方便查找书中的内容,通过对内容建立索引形成目录。索引是一个文件,它是要占据物理空间的。
索引的优点
索引的缺点
主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。
唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。
可以通过 ALTER TABLE table_name ADD UNIQUE (column); 创建唯一索引
可以通过 ALTER TABLE table_name ADD UNIQUE (column1,column2); 创建唯一组合索引
普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。
可以通过ALTER TABLE table_name ADD INDEX index_name (column);创建普通索引
可以通过ALTER TABLE table_name ADD INDEX index_name(column1, column2, column3);创建组合索引
全文索引: 是目前搜索引擎使用的一种关键技术。
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
1. B树索引
mysql通过存储引擎取数据,基本上90%的人用的就是InnoDB了,按照实现方式分,InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)
查询方式:
主键索引区:PI(关联保存的时数据的地址)按主键查询,
普通索引区:si(关联的id的地址,然后再到达上面的地址)。所以按主键查询,速度最快
B+tree性质:
1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。
2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。
4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。
5.)B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。
2. 哈希索引
简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,主要就是通过Hash算法(常见的Hash算法有直接定址法、平方取中法、折叠法、除数取余法、随机数法),将数据库字段数据转换成定长的Hash值,与这条数据的行指针一并存入Hash表的对应位置;如果发生Hash碰撞(两个不同关键字的Hash值相同),则在对应Hash键下以链表形式存储。当然这只是简略模拟图。
索引用来快速地寻找那些具有特定值的记录。如果没有索引,一般来说执行查询时遍历整张表。
索引的原理很简单,就是把无序的数据变成有序的查询
把创建了索引的列的内容进行排序
对排序结果生成倒排表
在倒排表内容上拼上数据地址链
在查询的时候,先拿到倒排表内容,再取出数据地址链,从而拿到具体数据
索引算法有 BTree算法和Hash算法
BTree算法
BTree是最常用的mysql数据库索引算法,也是mysql默认的算法。因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操作符,只要它的查询条件是一个不以通配符开头的常量, 例如:
-- 只要它的查询条件是一个不以通配符开头的常量
select * from user where name like 'jack%';
-- 如果一通配符开头,或者没有使用常量,则不会使用索引,例如:
select * from user where name like '%jack';
Hash算法
Hash Hash索引只能用于对等比较,例如=,<=>(相当于=)操作符。由于是一次定位数据,不像BTree索引需要从根节点到枝节点,最后才能访问到页节点这样多次IO访问,所以检索效率远高于BTree索引。
索引虽好,但也不是无限制的使用,最好符合一下几个原则
1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2)较频繁作为查询条件的字段才去创建索引
3)更新频繁字段不适合创建索引
4)若是不能有效区分数据的列不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)
5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
6)定义有外键的数据列一定要建立索引。
7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。
8)对于定义为text、image和bit的数据类型的列不要建立索引。
在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。
B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。
B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。
由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间
首先要知道Hash索引和B+树索引的底层实现原理:
hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据。B+树底层实现是多路平衡查找树。对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。
那么可以看出他们有以下的不同:
hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。
因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围。
hash索引不支持使用索引进行排序,原理同上。
hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性。
hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。
因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度。而不需要使用hash索引。
澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上的一组操作,要么都执行,要么都不执行。
事务最经典也经常被拿出来说例子就是转账了。
假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。
为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。
SQL 标准定义了四个隔离级别:
READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
这里需要注意的是:Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别
事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。
因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用REPEATABLE-READ(可重读) 并不会有任何性能损失。
InnoDB 存储引擎在 分布式事务 的情况下一般会用到SERIALIZABLE(可串行化) 隔离级别。
从锁的类别上来讲,有共享锁和排他锁。
共享锁: 又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。
排他锁: 又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。
答:InnoDB是基于索引来完成行锁
例: select * from tab_with_index where id = 1 for update;
for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
1、如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
2、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
3、对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。
悲观锁: 假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制
乐观锁: 假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐一般会使用版本号机制或CAS算法实现。
两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
存储过程是一个预编译的SQL语句,优点是允许模块化的设计,就是说只需要创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次SQL,使用存储过程比单纯SQL语句执行要快。
优点
1)存储过程是预编译过的,执行效率高。
2)存储过程的代码直接存放于数据库中,通过存储过程名直接调用,减少网络通讯。
3)安全性高,执行存储过程需要有一定权限的用户。
4)存储过程可以重复使用,减少数据库开发人员的工作量。
缺点
1)调试麻烦,但是用 PL/SQL Developer 调试很方便!弥补这个缺点。
2)移植问题,数据库端代码当然是与数据库相关的。但是如果是做工程型项目,基本不存在移植问题。
3)重新编译问题,因为后端代码是运行前编译的,如果带有引用关系的对象发生改变时,受影响的存储过程、包将需要重新编译(不过也可以设置成运行时刻自动编译)。
4)如果在一个程序系统中大量的使用存储过程,到程序交付使用的时候随着用户需求的增加会导致数据结构的变化,接着就是系统的相关问题了,最后如果用户想维护该系统可以说是很难很难、而且代价是空前的,维护起来更麻烦。
触发器是用户定义在关系表上的一类由事件驱动的特殊的存储过程。触发器是指一段代码,当触发某个事件时,自动执行这些代码。
使用场景
在MySQL数据库中有如下六种触发器:
char的特点
char表示定长字符串,长度是固定的;
如果插入数据的长度小于char的固定长度时,则用空格填充;
因为长度固定,所以存取速度要比varchar快很多,甚至能快50%,但正因为其长度固定,所以会占据多余的空间,是空间换时间的做法;
对于char来说,最多能存放的字符个数为255,和编码无关
varchar的特点
varchar表示可变长字符串,长度是可变的;
插入的数据是多长,就按照多长来存储;
varchar在存取方面与char相反,它存取慢,因为长度不固定,但正因如此,不占据多余的空间,是时间换空间的做法;
对于varchar来说,最多能存放的字符个数为65532
总之,结合性能角度(char更快)和节省磁盘空间角度(varchar更小),具体情况还需具体来设计数据库才是妥当的做法。
主从复制: 将主数据库中的DDL和DML操作通过二进制日志(BINLOG)传输到从数据库上,然后将这些日志重新执行(重做);从而使得从数据库的数据与主数据库保持一致。
主从复制的作用
MySQL主从复制解决的问题
MySQL主从复制工作原理
读写分离是依赖于主从复制,而主从复制又是为读写分离服务的。因为主从复制要求slave不能写只能读(如果对slave执行写操作,那么show slave status将会呈现Slave_SQL_Running=NO,此时你需要按照前面提到的手动同步一下slave)。
方案一
使用mysql-proxy代理
优点:直接实现读写分离和负载均衡,不用修改代码,master和slave用一样的帐号,mysql官方不建议实际生产中使用
缺点:降低性能, 不支持事务
方案二
使用AbstractRoutingDataSource+aop+annotation在dao层决定数据源。
如果采用了mybatis, 可以将读写分离放在ORM层,比如mybatis可以通过mybatis plugin拦截sql语句,所有的insert/update/delete都访问master库,所有的select 都访问salve库,这样对于dao层都是透明。 plugin实现时可以通过注解或者分析语句是读写方法来选定主从库。不过这样依然有一个问题, 也就是不支持事务, 所以我们还需要重写一下DataSourceTransactionManager, 将read-only的事务扔进读库, 其余的有读有写的扔进写库。
方案三
使用AbstractRoutingDataSource+aop+annotation在service层决定数据源,可以支持事务.
缺点:类内部方法通过this.xx()方式相互调用时,aop不会进行拦截,需进行特殊处理。
定位慢 SQL
在开发中,经常会遇到一个接口返回数据的等待时间过长,这时候我们就需要查看是否因为慢sql导致, 定位慢 SQL 有如下两种解决方案:
1.查看慢查询日志确定已经执行完的慢查询
2.show processlist 查看正在执行的慢查询
1.首先开启慢查询日志
set global slow_query_log = on;
2.设置慢查询时间阀值
set global long_query_time = 1;(这里的单位是秒,我这里设置的是1秒)
3.确定慢查询日志路径
show global variables like “datadir”;
4.确定慢查询日志的文件名
show global variables like “slow_query_log_file”;
然后根据文件路径直接用tail命令查看日志就行了,如果大家觉得看系统日志不方便,也可以通过pt-query-digest 或者 mysqldumpslow 等工具对慢查询日志进行分析。
show processlist;
Time:表示执行时间
Info:表示 SQL 语句
什么是回表查询?
这先要从InnoDB的索引实现说起,InnoDB有两大类索引:聚集索引(clustered index)和普通索引(secondary index)
InnoDB聚集索引和普通索引有什么差异?
InnoDB聚集索引的叶子节点存储行记录,因此, InnoDB必须要有,且只有一个聚集索引:
如果表定义了PK,则PK就是聚集索引;
如果表没有定义PK,则第一个not NULL unique列是聚集索引;
否则,InnoDB会创建一个隐藏的row-id作为聚集索引;
画外音:
EG:
设表 :t(id PK, name KEY, sex, flag);
id是聚集索引,name是普通索引。
表中有四条记录:
1, shenjian, m, A
3, zhangsan, m, A
5, lisi, m, A
9, wangwu, f, B
1.既然从普通索引无法直接定位行记录,那普通索引的查询过程是怎么样的呢?
通常情况下,需要扫码两遍索引树。
如:
select * from t where name='lisi';
如粉红色路径,需要扫码两遍索引树:
(1)先通过普通索引定位到主键值id=5;
(2)在通过聚集索引定位到行记录;
这就是所谓的回表查询,先定位主键值,再定位行记录,它的性能较扫一遍索引树更低。
2.什么是索引覆盖 (Covering index) ?
只需要在一棵索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。
如何实现索引覆盖?
常见的方法是:将被查询的字段,建立到联合索引里去。
create table user (
id int primary key,
name varchar(20),
sex varchar(5),
index(name)
)engine=innodb;
第一个SQL语句:
select id,name from user where name=‘shenjian’;
能够命中name索引,索引叶子节点存储了主键id,通过name的索引树即可获取id和name,无需回表,符合索引覆盖,效率较高。
第二个SQL语句:
select id,name,sex from user where name=‘shenjian’;
能够命中name索引,索引叶子节点存储了主键id,但sex字段必须回表查询才能获取到,不符合索引覆盖,需要再次通过id值扫码聚集索引获取sex字段,效率会降低。
如果把(name)单列索引升级为联合索引(name, sex)就不同了。
create table user (
id int primary key,
name varchar(20),
sex varchar(5),
index(name, sex)
)engine=innodb;
可以看到:
select id,name … where name=‘shenjian’;
select id,name,sex … where name=‘shenjian’;
都能够命中索引覆盖,无需回表。
哪些场景可以利用索引覆盖来优化SQL?
场景1:全表count查询优化
原表为:user(PK id, name, sex);
直接:select count(name) from user;
不能利用索引覆盖。
添加索引:alter table user add key(name);
就能够利用索引覆盖提效。
场景2:列查询回表优化
select id,name,sex … where name=‘shenjian’;
这个例子不再赘述,将单列索引(name)升级为联合索引(name, sex),即可避免回表。
场景3:分页查询
select id,name,sex … order by name limit 500,100;
将单列索引(name)升级为联合索引(name, sex),也可以避免回表。
InnoDB聚集索引普通索引 , 回表 , 索引覆盖 ,希望这1分钟大家有收获。
使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。
通过EXPLAIN,我们可以分析出以下结果:
执行计划包含的信息
id:select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序
id相同,执行顺序由上至下
加载表的顺序如上图table列所示:t1 t3 t2
id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
id相同不同,同时存在 id相同的可以认为是一组,同一组中从上往下执行,所有组中id大的优先执行
如上图所示,在id为1时,table显示的是 ,这里指的是指向id为2的表,即t3表的衍生表。
select_type:表示查询的类型,主要是用于区别普通查询、联合查询、子查询等的复杂查询
simple :简单的select查询,查询中不包含子查询或者UNION
primary :查询中若包含任何复杂的子部分,最外层查询则被标记为PRIMARY
subquery:在SELECT或WHERE列表中包含了子查询
derived:在FROM列表中包含的子查询被标记为DERIVED(衍生),MySQL会递归执行这些子查询,把结果放在临时表中
union:若第二个SELECT出现在UNION之后,则被标记为UNION:若UNION包含在FROM子句的子查询中,外层SELECT将被标记为:DERIVED
union result: 从UNION表获取结果的SELECT
table:输出的行所引用的表
type:显示的是查询使用了哪种类型
从最好到最差依次是:
system > const > eq_ref > ref > range > index > all
一般来说,得保证查询至少达到range级别,最好能达到ref。
system 表只有一行记录(等于系统表),这是const类型的特列,平时不会出现,这个也可以忽略不计
const 表示通过索引一次就找到了,const用于比较primary key 或者unique索引。因为只匹配一行数据,所以很快。如将主键置于where列表中,MySQL就能将该查询转换为一个常量。
首先进行子查询得到一个结果的d1临时表,子查询条件为id = 1 是常量,所以type是const,id为1的相当于只查询一条记录,所以type为system。
eq_ref 唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键或唯一索引扫描
ref 非唯一性索引扫描,返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回所有匹配某个单独值的行,然而,它可能会找到多个符合条件的行,所以他应该属于查找和扫描的混合体。
range 只检索给定范围的行,使用一个索引来选择行,key列显示使用了哪个索引,一般就是在你的where语句中出现between、< 、>、in等的查询,这种范围扫描索引比全表扫描要好,因为它只需要开始于索引的某一点,而结束于另一点,不用扫描全部索引。
index Full Index Scan,Index与All区别为index类型只遍历索引树。这通常比ALL快,因为索引文件通常比数据文件小。(也就是说虽然all和Index都是读全表,但index是从索引中读取的,而all是从硬盘读取的)
id是主键,所以存在主键索引
all Full Table Scan 将遍历全表以找到匹配的行
possible_keys
显示可能应用在这张表中的索引,一个或多个。查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用。
key
ref :显示索引的那一列被使用了,如果可能的话,最好是一个常数。哪些列或常量被用于查找索引列上的值。
Extra : 包含不适合在其他列中显式但十分重要的额外信息
Using filesort(九死一生)
说明mysql会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。MySQL中无法利用索引完成的排序操作称为“文件排序”。
Using temporary(十死无生)
使用了用临时表保存中间结果,MySQL在对查询结果排序时使用临时表。常见于排序order by和分组查询group by。
Using index(发财了)
表示相应的select操作中使用了覆盖索引(Covering Index),避免访问了表的数据行,效率不错。如果同时出现using where,表明索引被用来执行索引键值的查找;如果没有同时出现using where,表明索引用来读取数据而非执行查找动作。
Using where
表明使用了where过滤
Using join buffer
表明使用了连接缓存,比如说在查询的时候,多表join的次数非常多,那么将配置文件中的缓冲区的join buffer调大一些。
impossible where
where子句的值总是false,不能用来获取任何元组
SELECT * FROM t_user WHERE id = '1' and id = '2'
select tables optimized away
在没有GROUPBY子句的情况下,基于索引优化MIN/MAX操作或者对于MyISAM存储引擎优化COUNT(*)操作,不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化。
distinct
优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作
select distinct
<select_list>
from
<left_table><join_type>
join <right_table> on <join_condition>
where
<where_condition>
group by
<group_by_list>
having
<having_condition>
order by
<order_by_condition>
limit <limit number>
SQL执行顺序
1、from <left_table><join_type>
2、on <join_condition>
3、<join_type> join <right_table>
4、where <where_condition>
5、group by <group_by_list>
6、having <having_condition>
7、select
8、distinct <select_list>
9、order by <order_by_condition>
10、limit <limit_number>
业务高峰期时,用户提交完订单,在我的订单列表中却看不到自己提交的订单信息(典型的read after write问题);系统内部偶尔也会出现一些查询不到数据的异常。通过监控,我们发现,业务高峰期MySQL可能会出现主从复制延迟,极端情况,主从延迟高达数秒。这极大的影响了用户体验。
那如何监控主从同步状态?在从库机器上,执行show slave status,查看Seconds_Behind_Master值,代表主从同步从库落后主库的时间,单位为秒,若主从同步无延迟,这个值为0。MySQL主从延迟一个重要的原因之一是主从复制是单线程串行执行(高版本MySQL支持并行复制)。
那如何避免或解决主从延迟?我们做了如下一些优化:
binlog
binlog用于记录数据库执行的写入性操作(不包括查询)信息,以二进制的形式保存在磁盘中。binlog是mysql的逻辑日志,并且由Server层进行记录,使用任何存储引擎的mysql数据库都会记录binlog日志。
binlog是通过追加的方式进行写入的,可以通过max_binlog_size参数设置每个binlog文件的大小,当文件大小达到给定值之后,会生成新的文件来保存日志。
binlog使用场景
在实际应用中,binlog的主要使用场景有两个,分别是主从复制和数据恢复。
binlog刷盘时机
对于InnoDB存储引擎而言,只有在事务提交时才会记录biglog,此时记录还在内存中,那么biglog是什么时候刷到磁盘中的呢?mysql通过sync_binlog参数控制biglog的刷盘时机,取值范围是0-N:
0:不去强制要求,由系统自行判断何时写入磁盘;
1:每次commit的时候都要将binlog写入磁盘;
N:每N个事务,才会将binlog写入磁盘。
从上面可以看出,sync_binlog最安全的是设置是1,这也是MySQL 5.7.7之后版本的默认值。但是设置一个大一些的值可以提升数据库性能,因此实际情况下也可以将值适当调大,牺牲一定的一致性来获取更好的性能。
redo log
我们都知道,事务的四大特性里面有一个是持久性,具体来说就是只要事务提交成功,那么对数据库做的修改就被永久保存下来了,不可能因为任何原因再回到原来的状态。那么mysql是如何保证一致性的呢?最简单的做法是在每次事务提交的时候,将该事务涉及修改的数据页全部刷新到磁盘中。但是这么做会有严重的性能问题,主要体现在两个方面:
因为Innodb是以页为单位进行磁盘交互的,而一个事务很可能只修改一个数据页里面的几个字节,这个时候将完整的数据页刷到磁盘的话,太浪费资源了!
一个事务可能涉及修改多个数据页,并且这些数据页在物理上并不连续,使用随机IO写入性能太差!
因此mysql设计了redo log,具体来说就是只记录事务对数据页做了哪些修改,这样就能完美地解决性能问题了(相对而言文件更小并且是顺序IO)。
redo log包括两部分:一个是内存中的日志缓冲(redo log buffer),另一个是磁盘上的日志文件(redo log file)。mysql每执行一条DML语句,先将记录写入redo log buffer,后续某个时间点再一次性将多个操作记录写到redo log file。这种先写日志,再写磁盘的技术就是MySQL里经常说到的WAL(Write-Ahead Logging) 技术。
在计算机操作系统中,用户空间(user space)下的缓冲区数据一般情况下是无法直接写入磁盘的,中间必须经过操作系统内核空间(kernel space)缓冲区(OS Buffer)。因此,redo log buffer写入redo log file实际上是先写入OS Buffer,然后再通过系统调用fsync()将其刷到redo log file中,过程如下:
mysql支持三种将redo log buffer写入redo log file的时机,可以通过innodb_flush_log_at_trx_commit参数配置,各参数值含义如下:
undo log
数据库事务四大特性中有一个是原子性,具体来说就是 原子性是指对数据库的一系列操作,要么全部成功,要么全部失败,不可能出现部分成功的情况。
实际上,原子性底层就是通过undo log实现的。undo log主要记录了数据的逻辑变化,比如一条INSERT语句,对应一条DELETE的undo log,对于每个UPDATE语句,对应一条相反的UPDATE的undo log,这样在发生错误时,就能回滚到事务之前的数据状态。
同时,undo log也是MVCC(多版本并发控制)实现的关键
并发事务带来的问题,一个比较简单粗暴的方法是加锁,但是加锁必然会带来性能的降低,因此 MySQL 使用了 MVCC 来提升并发事务下的性能。
MVCC是一种多版本并发控制机制,通过保存数据在某个时间点的快照来实现的. 不同存储引擎的MVCC. 不同存储引擎的MVCC实现是不同的,典型的有乐观并发控制和悲观并发控制.
参考链接
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。