赞
踩
以下内容为文章的整合
原文:https://blog.csdn.net/weixin_39539399/article/details/80851817
在MYSQL的连表查询中,最好是遵循‘小表驱动大表的原则’
SELECT * FROM A WHERE id IN (SELECT id FROM B);
等价于:1、SELECT id FROM B ----->先执行in中的查询
2、SELECT * FROM A WHERE A.id = B.id
(先子查询在主表查询)以上in()中的查询只执行一次,它查询出B中的所有的id并缓存起来,然后检查A表中查询出的id在缓存中是否存在,如果存在则将A的查询数据加入到结果集中,直到遍历完A表中所有的结果集为止。
以下用遍历结果集的方式来分析IN查询
通过以上程序可以看出,当B表的数据较大时不适合使用in()查询,因为它会将B表中的数据全部遍历一次
例如:
1、A表中有100条记录,B表中有1000条记录,那么最多可能遍历100*1000次,效率很差
2、A表中有1000条记录,B表中有100条记录,那么最多可遍历1000*100此,内循环次数减少,效率大大提升
结论:IN()查询适合B表数据比A表数据小的情况,IN()查询是从缓存中取数据
语法:SELECT 字段 FROM table WHERE EXISTS(subquery);
SELECT * FROM a WHERE EXISTS(SELECT 1 FROM b WHERE B.id = A.id);
以上查询等价于:
1、SELECT * FROM A;
2、SELECT I FROM B WHERE B.id = A.id;
(先主表查询,在与子表做验证)EXISTS()查询会执行SELECT * FROM A查询,执行A.length次,并不会将EXISTS()查询结果结果进行缓存,因为EXISTS()查询返回一个布尔值true或flase,它只在乎EXISTS()的查询中是否有记录,与具体的结果集无关。
EXISTS()查询是将主查询的结果集放到子查询中做验证,根据验证结果是true或false来决定主查询数据结果是否得以保存。
以下用遍历结果集的方式来分析EXISTS查询
从以上程序可以看出:
当B表的数据比A表的数据大时适合使用EXISTS()查询,因为它不用遍历B操作,只执行一次查询就OK了
例如:
1、A表有100条记录,B表有1000条记录,那么EXISTS()会执行100次去判断A表中的id是否与B表中的id相等.因为它只执行A.length次,可见B表数据越多,越适合EXISTS()发挥效果.
2、A表有10000条记录,B表有100条记录,那么EXISTS()还是执行10000次,此时不如使用in()遍历10000*100次,因为IN()是在内存里遍历数据进行比较,而EXISTS()需要查询数据库,我们都知道查询数据库所消耗的性能更高,而内存比较很快.
3、结论:
exists()适合B表比A表数据大的情况
当A表数据与B表数据一样大时,in与exists效率差不多,可任选一个使用
原文:https://blog.csdn.net/wqc19920906/article/details/79800374
in 和 exists的区别: 如果子查询得出的结果集记录较少,主查询中的表较大且又有索引时应该用in, 反之如果外层的主查询记录较少,子查询中的表大,又有索引时使用exists。其实我们区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询,所以我们会以驱动表的快速返回为目标,那么就会考虑到索引及结果集的关系了 ,另外IN时不对NULL进行处理。 in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询。一直以来认为exists比in效率高的说法是不准确的。
如果查询语句使用了not in 那么内外表都进行全表扫描,没有用到索引;
而not extsts 的子查询依然能用到表上的索引。
所以无论那个表大,用not exists都比not in要快。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。