赞
踩
目录
前提:ubuntu20.04, python3.9
yolov8 官方说明:Home - Ultralytics YOLOv8 Docs
yolov8 官方仓库: https://github.com/ultralytics/ultralytics
anaconda官网网址下载: Anaconda | The World’s Most Popular Data Science Platform
- $ conda create -n yolov8 python=3.9 -y
- $ conda activate yolov8
- $ pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
- from ultralytics import YOLO
-
-
- model = YOLO("xxx/weights/yolov8n.pt")
- results = model.train(data="/xxx/train_cfg.yaml", epochs=100, batch=4)
- # train_cfg.yaml coco
-
- train: /xxx/dataSet/train.txt # train images
- val: //xxx/val.txt # val images
- test: //xxx/test.txt #
-
- # Classes
- nc: 2 # number of classes
- names: ['apple', 'orange']
- from ultralytics import YOLO
- import os
- import cv2
- # Load a model
- model = YOLO("/xxx/weights/best.pt")
-
- # Use the model
- path = "/xxx/test"
- inputs = list()
- for i_name in os.listdir(path):
- i_path = os.path.join(path, i_name)
- i_img = cv2.imread(i_path, 1)
- inputs.append(i_img)
-
- model.predict(inputs, save=True, imgsz=320, conf=0.25)
- # 安装 onnx, onnxsim, ncnn
- conda activate yolov8
- pip install onnx -i https://pypi.doubanio.com/simple
- pip install onnxsim -i https://pypi.doubanio.com/simple
- cd /home/xxy
- git clone https://github.com/Tencent/ncnn.git
- cd ncnn
- mkdir build && cd build
- cmake ..
- make
- make install
- # 使用 onnx, onnxsim, ncnn
- cd /xxx/ultralytics/runs/detect/${train_xxx}/weights
- conda activate yolov8
-
- # pt -> onnx
- python export.py
-
- # onnx -> onnxsim
- python3 -m onnxsim best.onnx best-sim.onnx
-
- # onnxsim -> ncnn
- cd /xxxy/ncnn/build/tools/onnx
- ./onnx2ncnn /xxx/best-sim.onnx /xxx/best-sim.param /xxx/best-sim.bin
- # export.py
- from ultralytics import YOLO
- model = YOLO("/xxx/ultralytics/runs/detect/${train_xxx}/weights/best.pt")
- success = model.export(format="onnx") # 将模型导出为 ONNX 格式
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。