赞
踩
数据集加载
本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。
- from mindnlp.utils import http_get
-
- # download dataset
- url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
- path = http_get(url, './')
-
- from mindspore.dataset import TextFileDataset
-
- # load dataset
- dataset = TextFileDataset(str(path), shuffle=False)
- dataset.get_dataset_size()
-
- # split into training and testing dataset
- train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)
原始数据格式:
- article: [CLS] article_context [SEP]
- summary: [CLS] summary_context [SEP]
预处理后的数据格式:
[CLS] article_context [SEP] summary_context [SEP]
- import json
- import numpy as np
-
- # preprocess dataset
- def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
- def read_map(text):
- data = json.loads(text.tobytes())
- return np.array(data['article']), np.array(data['summarization'])
-
- def merge_and_pad(article, summary):
- # tokenization
- # pad to max_seq_length, only truncate the article
- tokenized = tokenizer(text=article, text_pair=summary,
- padding='max_length', truncation='only_first', max_length=max_seq_len)
- return tokenized['input_ids'], tokenized['input_ids']
-
- dataset = dataset.map(read_map, 'text', ['article', 'summary'])
- # change column names to input_ids and labels for the following training
- dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])
-
- dataset = dataset.batch(batch_size)
- if shuffle:
- dataset = dataset.shuffle(batch_size)
-
- return dataset

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。
- from mindnlp.transformers import BertTokenizer
-
- # We use BertTokenizer for tokenizing chinese context.
- tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
- len(tokenizer)
-
- train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
-
- next(train_dataset.create_tuple_iterator())
- from mindspore import ops
- from mindnlp.transformers import GPT2LMHeadModel
-
- class GPT2ForSummarization(GPT2LMHeadModel):
- def construct(
- self,
- input_ids = None,
- attention_mask = None,
- labels = None,
- ):
- outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
- shift_logits = outputs.logits[..., :-1, :]
- shift_labels = labels[..., 1:]
- # Flatten the tokens
- loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
- return loss
- from mindspore import ops
- from mindspore.nn.learning_rate_schedule import LearningRateSchedule
-
- class LinearWithWarmUp(LearningRateSchedule):
- """
- Warmup-decay learning rate.
- """
- def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
- super().__init__()
- self.learning_rate = learning_rate
- self.num_warmup_steps = num_warmup_steps
- self.num_training_steps = num_training_steps
-
- def construct(self, global_step):
- if global_step < self.num_warmup_steps:
- return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
- return ops.maximum(
- 0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
- ) * self.learning_rate
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。