当前位置:   article > 正文

昇思25天学习打卡营第26天 | 基于MindSpore的GPT2文本摘要

昇思25天学习打卡营第26天 | 基于MindSpore的GPT2文本摘要

基于MindSpore的GPT2文本摘要

数据集加载与处理

  1. 数据集加载

    本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

    1. from mindnlp.utils import http_get
    2. # download dataset
    3. url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
    4. path = http_get(url, './')
    5. from mindspore.dataset import TextFileDataset
    6. # load dataset
    7. dataset = TextFileDataset(str(path), shuffle=False)
    8. dataset.get_dataset_size()
    9. # split into training and testing dataset
    10. train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)
  2. 数据预处理

    原始数据格式

    1. article: [CLS] article_context [SEP]
    2. summary: [CLS] summary_context [SEP]

    预处理后的数据格式:

    [CLS] article_context [SEP] summary_context [SEP]
  1. import json
  2. import numpy as np
  3. # preprocess dataset
  4. def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
  5. def read_map(text):
  6. data = json.loads(text.tobytes())
  7. return np.array(data['article']), np.array(data['summarization'])
  8. def merge_and_pad(article, summary):
  9. # tokenization
  10. # pad to max_seq_length, only truncate the article
  11. tokenized = tokenizer(text=article, text_pair=summary,
  12. padding='max_length', truncation='only_first', max_length=max_seq_len)
  13. return tokenized['input_ids'], tokenized['input_ids']
  14. dataset = dataset.map(read_map, 'text', ['article', 'summary'])
  15. # change column names to input_ids and labels for the following training
  16. dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])
  17. dataset = dataset.batch(batch_size)
  18. if shuffle:
  19. dataset = dataset.shuffle(batch_size)
  20. return dataset

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。

  1. from mindnlp.transformers import BertTokenizer
  2. # We use BertTokenizer for tokenizing chinese context.
  3. tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
  4. len(tokenizer)
  5. train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
  6. next(train_dataset.create_tuple_iterator())

模型构建

  1. 构建GPT2ForSummarization模型,注意shift right的操作。
    1. from mindspore import ops
    2. from mindnlp.transformers import GPT2LMHeadModel
    3. class GPT2ForSummarization(GPT2LMHeadModel):
    4. def construct(
    5. self,
    6. input_ids = None,
    7. attention_mask = None,
    8. labels = None,
    9. ):
    10. outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
    11. shift_logits = outputs.logits[..., :-1, :]
    12. shift_labels = labels[..., 1:]
    13. # Flatten the tokens
    14. loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
    15. return loss
    16. from mindspore import ops
    17. from mindspore.nn.learning_rate_schedule import LearningRateSchedule
    18. class LinearWithWarmUp(LearningRateSchedule):
    19. """
    20. Warmup-decay learning rate.
    21. """
    22. def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
    23. super().__init__()
    24. self.learning_rate = learning_rate
    25. self.num_warmup_steps = num_warmup_steps
    26. self.num_training_steps = num_training_steps
    27. def construct(self, global_step):
    28. if global_step < self.num_warmup_steps:
    29. return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
    30. return ops.maximum(
    31. 0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
    32. ) * self.learning_rate

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号