当前位置:   article > 正文

小样本学习综述_人工智能 小样本怎么做

人工智能 小样本怎么做

小样本学习综述

数据是机器学习领域的重要资源,在数据缺少的情况下如何训练模型呢?小样本学习是其中一个解决方案。来自香港科技大学和第四范式的研究人员综述了该领域的研究发展,并提出了未来的研究方向。

这篇综述论文已被 ACM Computing Surveys 接收,作者还建立了 GitHub repo,用于更新该领域的发展。

· 论文地址:https://arxiv.org/pdf/1904.05046.pdf

· GitHub 地址:https://github.com/tata1661/FewShotPapers

本文的贡献总结如下:

•给出了FSL的正式定义,它自然地与经典的机器学习定义联系在一起[92,94]。这个定义不仅足够笼统地包含现有的FSL工作,而且足够具体地阐明FSL的目标是什么以及如何解决它。这一定义有助于确定未来FSL领域的研究目标。

•列举了与FSL相关的学习问题,并举例说明它们与FSL的关系和区别。这些讨论有助于在各种学习问题中更好地辨别和定位FSL。

•指出FSL监督学习问题的核心问题是不可靠的经验风险最小化,这是基于机器学习中的错误分解[17]进行分析的。这为更有组织和系统的方式改进FSL方法提供了见解。

•进行了广泛的文献回顾,并从数据、模型和算法的角度将其组织成统一的分类法。还总结了见解,并讨论了每一类的利弊。这有助于更好地理解FSL方法。

•在问题设置、技术、应用和理论方面为FSL提出了有希望的未来方向。这些见解是基于当前FSL发展的弱点,以及未来可能的改进。

机器学习在数据密集型应用中取得了很大成功,但在面临小数据集的情况下往往捉襟见肘。近期出现的小样本学习(Few-Shot
Learning,FSL)方法旨在解决该问题。FSL 利用先验知识,能够快速泛化至仅包含少

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/877698
推荐阅读
相关标签
  

闽ICP备14008679号