赞
踩
PCA是Principal Component Analysis的缩写,也就是主成分分析。也是用于降维常用的一中方法。PCA 主要用于数据降维,对于高维的向量,PCA 方法求得一个 k 维特征的投影矩阵,这个投影矩阵可以将特征从高维降到低维。投影矩阵也可以叫做变换矩阵。新的低维特征必须每个维都正交,特征向量都是正交的。通过求样本矩阵的协方差矩阵,然后求出协方差矩阵的特征向量,这些特征向量就可以构成这个投影矩阵了。特征向量的选择取决于协方差矩阵的特征值的大小。
数据降维的目的:
降维后的特征向量减少冗余,具有低相关性等性质,在某些程度上反应了特征的本质,且在以后做分类预测等时,不容易陷入过拟合(overfitting)。
输入一组大小为 w×h 的图像,将其按列相连构成一个 M=w×h 维的列向量。设一共有 N 张图像, Xj 维第 j 副图像的列向量,X 为 N 副图像组合起来的图像矩阵。则总体的协方差矩阵:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。