赞
踩
MDIO是串行管理接口。MAC 和 PHY 芯片有一个配置接口,即 MDIO 接口,可以配置 PHY 芯片的工作模式以及获取 PHY 芯片的若干状态信息。
1.MDIO部分的接口结构
2.千兆以太网在接口上兼容百兆和十兆以太网。
3.YT8511 是一个千兆以太网物理层收发器,支持 1000/100/10Mbps 通信速率,该芯片内部的参数可以通过MDIO接口进行配置。
MDIO接口主要是控制三根接口线,进行驱动和读写。
mdio_dri文件:输入一些读写开始等等控制信号,输出读到的数据和控制芯片的时钟
module mdio_dri #( parameter PHY_ADDR = 5'b00100,//PHY地址 parameter CLK_DIV = 6'd10 //分频系数 ) ( input clk , //时钟信号 input rst_n , //复位信号,低电平有效 input op_exec , //触发开始信号 input op_rh_wl , //低电平写,高电平读 input [4:0] op_addr , //寄存器地址 input [15:0] op_wr_data, //写入寄存器的数据 output reg op_done , //读写完成 output reg [15:0] op_rd_data, //读出的数据 output reg op_rd_ack , //读应答信号 0:应答 1:未应答 output reg dri_clk , //驱动时钟 output reg eth_mdc , //PHY管理接口的时钟信号 inout eth_mdio //PHY管理接口的双向数据信号 ); //parameter define localparam st_idle = 6'b00_0001; //空闲状态 localparam st_pre = 6'b00_0010; //发送PRE(前导码) localparam st_start = 6'b00_0100; //开始状态,发送ST(开始)+OP(操作码) localparam st_addr = 6'b00_1000; //写地址,发送PHY地址+寄存器地址 localparam st_wr_data = 6'b01_0000; //TA+写数据 localparam st_rd_data = 6'b10_0000; //TA+读数据 //reg define reg [5:0] cur_state ; reg [5:0] next_state; reg [5:0] clk_cnt ; //分频计数 reg [15:0] wr_data_t ; //缓存写寄存器的数据 reg [4:0] addr_t ; //缓存寄存器地址 reg [6:0] cnt ; //计数器 reg st_done ; //状态开始跳转信号 reg [1:0] op_code ; //操作码 2'b01(写) 2'b10(读) reg mdio_dir ; //MDIO数据(SDA)方向控制 reg mdio_out ; //MDIO输出信号 reg [15:0] rd_data_t ; //缓存读寄存器数据 //wire define wire mdio_in ; //MDIO数据输入 wire [5:0] clk_divide ; //PHY_CLK的分频系数 assign eth_mdio = mdio_dir ? mdio_out : 1'bz; //控制双向io方向 assign mdio_in = eth_mdio; //MDIO数据输入 //将PHY_CLK的分频系数除以2,得到dri_clk的分频系数,方便对MDC和MDIO信号操作 assign clk_divide = CLK_DIV >> 1; //分频得到dri_clk时钟 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin dri_clk <= 1'b0; clk_cnt <= 1'b0; end else if(clk_cnt == clk_divide[5:1] - 1'd1) begin clk_cnt <= 1'b0; dri_clk <= ~dri_clk; end else clk_cnt <= clk_cnt + 1'b1; end //产生PHY_MDC时钟 always @(posedge dri_clk or negedge rst_n) begin if(!rst_n) eth_mdc <= 1'b1; else if(cnt[0] == 1'b0) eth_mdc <= 1'b1; else eth_mdc <= 1'b0; end //(三段式状态机)同步时序描述状态转移 always @(posedge dri_clk or negedge rst_n) begin if(!rst_n) cur_state <= st_idle; else cur_state <= next_state; end //组合逻辑判断状态转移条件 always @(*) begin next_state = st_idle; case(cur_state) st_idle : begin if(op_exec) next_state = st_pre; else next_state = st_idle; end st_pre : begin if(st_done) next_state = st_start; else next_state = st_pre; end st_start : begin if(st_done) next_state = st_addr; else next_state = st_start; end st_addr : begin if(st_done) begin if(op_code == 2'b01) //MDIO接口写操作 next_state = st_wr_data; else next_state = st_rd_data; //MDIO接口读操作 end else next_state = st_addr; end st_wr_data : begin if(st_done) next_state = st_idle; else next_state = st_wr_data; end st_rd_data : begin if(st_done) next_state = st_idle; else next_state = st_rd_data; end default : next_state = st_idle; endcase end //时序电路描述状态输出 always @(posedge dri_clk or negedge rst_n) begin if(!rst_n) begin cnt <= 5'd0; op_code <= 1'b0; addr_t <= 1'b0; wr_data_t <= 1'b0; rd_data_t <= 1'b0; op_done <= 1'b0; st_done <= 1'b0; op_rd_data <= 1'b0; op_rd_ack <= 1'b1; mdio_dir <= 1'b0; mdio_out <= 1'b1; end else begin st_done <= 1'b0 ; cnt <= cnt +1'b1 ; case(cur_state) st_idle : begin mdio_out <= 1'b1; mdio_dir <= 1'b0; op_done <= 1'b0; cnt <= 7'b0; if(op_exec) begin op_code <= {op_rh_wl,~op_rh_wl}; //OP_CODE: 2'b01(写) 2'b10(读) addr_t <= op_addr; wr_data_t <= op_wr_data; op_rd_ack <= 1'b1; end end st_pre : begin //发送前导码:32个1bit mdio_dir <= 1'b1; //切换MDIO引脚方向:输出 mdio_out <= 1'b1; //MDIO引脚输出高电平 if(cnt == 7'd62) st_done <= 1'b1; else if(cnt == 7'd63) cnt <= 7'b0; end st_start : begin case(cnt) 7'd1 : mdio_out <= 1'b0; //发送开始信号 2'b01 7'd3 : mdio_out <= 1'b1; 7'd5 : mdio_out <= op_code[1]; //发送操作码 7'd6 : st_done <= 1'b1; 7'd7 : begin mdio_out <= op_code[0]; cnt <= 7'b0; end default : ; endcase end st_addr : begin case(cnt) 7'd1 : mdio_out <= PHY_ADDR[4]; //发送PHY地址 7'd3 : mdio_out <= PHY_ADDR[3]; 7'd5 : mdio_out <= PHY_ADDR[2]; 7'd7 : mdio_out <= PHY_ADDR[1]; 7'd9 : mdio_out <= PHY_ADDR[0]; 7'd11: mdio_out <= addr_t[4]; //发送寄存器地址 7'd13: mdio_out <= addr_t[3]; 7'd15: mdio_out <= addr_t[2]; 7'd17: mdio_out <= addr_t[1]; 7'd18: st_done <= 1'b1; 7'd19: begin mdio_out <= addr_t[0]; cnt <= 7'd0; end default : ; endcase end st_wr_data : begin case(cnt) 7'd1 : mdio_out <= 1'b1; //发送TA,写操作(2'b10) 7'd3 : mdio_out <= 1'b0; 7'd5 : mdio_out <= wr_data_t[15];//发送写寄存器数据 7'd7 : mdio_out <= wr_data_t[14]; 7'd9 : mdio_out <= wr_data_t[13]; 7'd11: mdio_out <= wr_data_t[12]; 7'd13: mdio_out <= wr_data_t[11]; 7'd15: mdio_out <= wr_data_t[10]; 7'd17: mdio_out <= wr_data_t[9]; 7'd19: mdio_out <= wr_data_t[8]; 7'd21: mdio_out <= wr_data_t[7]; 7'd23: mdio_out <= wr_data_t[6]; 7'd25: mdio_out <= wr_data_t[5]; 7'd27: mdio_out <= wr_data_t[4]; 7'd29: mdio_out <= wr_data_t[3]; 7'd31: mdio_out <= wr_data_t[2]; 7'd33: mdio_out <= wr_data_t[1]; 7'd35: mdio_out <= wr_data_t[0]; 7'd37: begin mdio_dir <= 1'b0; mdio_out <= 1'b1; end 7'd39: st_done <= 1'b1; 7'd40: begin cnt <= 7'b0; op_done <= 1'b1; //写操作完成,拉高op_done信号 end default : ; endcase end st_rd_data : begin case(cnt) 7'd1 : begin mdio_dir <= 1'b0; //MDIO引脚切换至输入状态 mdio_out <= 1'b1; end 7'd2 : ; //TA[1]位,该位为高阻状态,不操作 7'd4 : op_rd_ack <= mdio_in; //TA[0]位,0(应答) 1(未应答) 7'd6 : rd_data_t[15] <= mdio_in; //接收寄存器数据 7'd8 : rd_data_t[14] <= mdio_in; 7'd10: rd_data_t[13] <= mdio_in; 7'd12: rd_data_t[12] <= mdio_in; 7'd14: rd_data_t[11] <= mdio_in; 7'd16: rd_data_t[10] <= mdio_in; 7'd18: rd_data_t[9] <= mdio_in; 7'd20: rd_data_t[8] <= mdio_in; 7'd22: rd_data_t[7] <= mdio_in; 7'd24: rd_data_t[6] <= mdio_in; 7'd26: rd_data_t[5] <= mdio_in; 7'd28: rd_data_t[4] <= mdio_in; 7'd30: rd_data_t[3] <= mdio_in; 7'd32: rd_data_t[2] <= mdio_in; 7'd34: rd_data_t[1] <= mdio_in; 7'd36: rd_data_t[0] <= mdio_in; 7'd39: st_done <= 1'b1; 7'd40: begin op_done <= 1'b1; //读操作完成,拉高op_done信号 op_rd_data <= rd_data_t; rd_data_t <= 16'd0; cnt <= 7'd0; end default : ; endcase end default : ; endcase end end endmodule
mdio_ctrl文件:对寄存器进行读写配置,主要还是读取状态,用于显示
1.基本控制寄存器地址:0x00
代码里面配置为16’h9140 即1001_0001_0100_0000
2.基本状态寄存器地址:0x01
用来读出转态信息
3.特定状态寄存器地址:0x11
module mdio_ctrl( input clk , input rst_n , input soft_rst_trig , //软复位触发信号 input op_done , //读写完成 input [15:0] op_rd_data , //读出的数据 input op_rd_ack , //读应答信号 0:应答 1:未应答 output reg op_exec , //触发开始信号 output reg op_rh_wl , //低电平写,高电平读 output reg [4:0] op_addr , //寄存器地址 output reg [15:0] op_wr_data , //写入寄存器的数据 output [1:0] led //LED灯指示以太网连接状态 ); //reg define reg rst_trig_d0; reg rst_trig_d1; reg rst_trig_flag; //soft_rst_trig信号触发标志 reg [23:0] timer_cnt; //定时计数器 reg timer_done; //定时完成信号 reg start_next; //开始读下一个寄存器标致 reg read_next; //处于读下一个寄存器的过程 reg link_error; //链路断开或者自协商未完成 reg [2:0] flow_cnt; //流程控制计数器 reg [1:0] speed_status; //连接速率 //wire define wire pos_rst_trig; //soft_rst_trig信号上升沿 //采soft_rst_trig信号上升沿 assign pos_rst_trig = ~rst_trig_d1 & rst_trig_d0; //未连接或连接失败时led赋值00 // 01:10Mbps 10:100Mbps 11:1000Mbps 00:其他情况 assign led = link_error ? 2'b00: speed_status; //对soft_rst_trig信号延时打拍 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin rst_trig_d0 <= 1'b0; rst_trig_d1 <= 1'b0; end else begin rst_trig_d0 <= soft_rst_trig; rst_trig_d1 <= rst_trig_d0; end end //定时计数 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin timer_cnt <= 1'b0; timer_done <= 1'b0; end else begin if(timer_cnt == 24'd1_000_000 - 1'b1) begin timer_done <= 1'b1; timer_cnt <= 1'b0; end else begin timer_done <= 1'b0; timer_cnt <= timer_cnt + 1'b1; end end end //根据软复位信号对MDIO接口进行软复位,并定时读取以太网的连接状态 always @(posedge clk or negedge rst_n) begin if(!rst_n) begin flow_cnt <= 3'd0; rst_trig_flag <= 1'b0; speed_status <= 2'b00; op_exec <= 1'b0; op_rh_wl <= 1'b0; op_addr <= 1'b0; op_wr_data <= 1'b0; start_next <= 1'b0; read_next <= 1'b0; link_error <= 1'b0; end else begin op_exec <= 1'b0; if(pos_rst_trig) rst_trig_flag <= 1'b1; //拉高软复位触发标志 case(flow_cnt) 2'd0 : begin if(rst_trig_flag) begin //开始对MDIO接口进行软复位 op_exec <= 1'b1; op_rh_wl <= 1'b0; op_addr <= 5'h00; op_wr_data <= 16'h9140; // Bit[15]=1'b1,表示软复位 flow_cnt <= 3'd1; end else if(timer_done) begin //定时完成,获取以太网连接状态 op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h01; flow_cnt <= 3'd2; end else if(start_next) begin //开始读下一个寄存器,获取以太网通信速度 op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h11; flow_cnt <= 3'd2; start_next <= 1'b0; read_next <= 1'b1; end end 2'd1 : begin if(op_done) begin //MDIO接口软复位完成 flow_cnt <= 3'd0; rst_trig_flag <= 1'b0; end end 2'd2 : begin if(op_done) begin //MDIO接口读操作完成 if(op_rd_ack == 1'b0 && read_next == 1'b0) //读第一个寄存器,接口成功应答, flow_cnt <= 3'd3; //读第下一个寄存器,接口成功应答 else if(op_rd_ack == 1'b0 && read_next == 1'b1)begin read_next <= 1'b0; flow_cnt <= 3'd4; end else begin flow_cnt <= 3'd0; end end end 2'd3 : begin flow_cnt <= 3'd0; //链路正常并且自协商完成 if(op_rd_data[5] == 1'b1 && op_rd_data[2] == 1'b1)begin start_next <= 1; link_error <= 0; end else begin link_error <= 1'b1; end end 3'd4: begin flow_cnt <= 3'd0; if(op_rd_data[15:14] == 2'b10) speed_status <= 2'b11; //1000Mbps else if(op_rd_data[15:14] == 2'b01) speed_status <= 2'b10; //100Mbps else if(op_rd_data[15:14] == 2'b00) speed_status <= 2'b01; //10Mbps else speed_status <= 2'b00; //其他情况 end endcase end end endmodule
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。