赞
踩
收藏关注不迷路
本文主要对音乐数据,进行分析,系统技术主要使用,1.对原始数据集进行预处理;3.使用python语言编写Spark程序对HDFS中的数据进行处理分析,并把分析结果写入到MySQL数据库;4.利用Spark MLlib进行数据和关系预测;5.利用IntelliJ IDEA搭建动态Web应用;6.利用plotly进行前端可视化分析。
关键词:音乐数据分析;可视化分析;python语言
本文对网易云音乐平台的数据进行分析,分析年度音乐专辑销量TOP10 ;年度月排行榜榜首播放量;最受欢迎的音乐类型;音乐评论数TOP榜;用户性别比例。使用Hadoop提供HDFS的分布式存储[10],利用Spark对HDFS中的数据进行处理,并对结果进行可视化分析。
音乐数据分析系统的设计开发工作:
开发语言:Python
python框架:django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
————————————————
整个音乐流量可视化系统,主要包含前台和后台,前台是可视化数据,呈现大屏幕效果,主要包含了音乐数据的分析,以及音乐播放量分析,音乐专辑分析,用户登录信息,后台包含登录注册功能,以及个人中心修改资料,音乐数据添加,对用户的删除和查看,音乐数据的预测分析,以及系统权限的设置,具体如下图所示。
图4-1音乐数据分析系统的分析
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {
'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。