当前位置:   article > 正文

基于spark的音乐数据分析系统的设计与实现_基于spark的音乐数据分析系统的设计与实现的功能介绍

基于spark的音乐数据分析系统的设计与实现的功能介绍

收藏关注不迷路


前言

本文主要对音乐数据,进行分析,系统技术主要使用,1.对原始数据集进行预处理;3.使用python语言编写Spark程序对HDFS中的数据进行处理分析,并把分析结果写入到MySQL数据库;4.利用Spark MLlib进行数据和关系预测;5.利用IntelliJ IDEA搭建动态Web应用;6.利用plotly进行前端可视化分析。

关键词:音乐数据分析;可视化分析;python语言

一、项目介绍

本文对网易云音乐平台的数据进行分析,分析年度音乐专辑销量TOP10 ;年度月排行榜榜首播放量;最受欢迎的音乐类型;音乐评论数TOP榜;用户性别比例。使用Hadoop提供HDFS的分布式存储[10],利用Spark对HDFS中的数据进行处理,并对结果进行可视化分析。
音乐数据分析系统的设计开发工作:

  1. 网易云音乐数据爬虫。在本课题中,需要爬取的数据主要包括音乐数据、用户数据、评论数据等等,每一种类型的数据对应一个爬取接口。使用Python进行数据清洗。这三种类型的数据分别应用于不同的功能中。
  2. 将前面爬取到的数据作为数据源,上传到HDFS文件系统上。
  3. 使用Scala语言编写Spark程序对数据进行分析处理。可以从多个角度对网易云音乐的现有数据进行有效的信息挖掘,并加以分析。
  4. 恰当的数据可视化展示。当分析出数据结论之后,采用合适的方式去展示最终的结果数据。比如可以使用柱状图、折线图、词云图、饼状图等阐释数据的特点。

二、开发环境

开发语言:Python
python框架:django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js

————————————————

三、功能介绍

整个音乐流量可视化系统,主要包含前台和后台,前台是可视化数据,呈现大屏幕效果,主要包含了音乐数据的分析,以及音乐播放量分析,音乐专辑分析,用户登录信息,后台包含登录注册功能,以及个人中心修改资料,音乐数据添加,对用户的删除和查看,音乐数据的预测分析,以及系统权限的设置,具体如下图所示。

在这里插入图片描述

图4-1音乐数据分析系统的分析

四、核心代码

部分代码:


def users_login(request):
    if request.method in ["POST", "GET"]:
        msg = {
   'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")
        if req_dict.get('role')!=None:
            del req_dict['role']
        datas = users.getbyparams(users, users, req_dict)
        if not datas:
            msg['code'] = password_error_code
            msg['msg'] = mes.password_error_code
            
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/1015812
推荐阅读
相关标签
  

闽ICP备14008679号