赞
踩
近几个月,几乎每个行业的小伙伴都了解到了ChatGPT的可怕能力。你知道么,ChatGPT之所以如此厉害,是因为它用到了几万张NVIDA Tesla A100显卡做AI推理和图形计算。
本文就简单分享下GPU的相关内容,欢迎阅读。
GPU的英文全称Graphics Processing Unit,图形处理单元。
说直白一点:GPU是一款专门的图形处理芯片,做图形渲染、数值分析、金融分析、密码破解,以及其他数学计算与几何运算的。GPU可以在PC、工作站、游戏主机、手机、平板等多种智能终端设备上运行。
GPU和显卡的关系,就像是CPU和主板的关系。前者是显卡的心脏,后者是主板的心脏。有些小伙伴会把GPU和显卡当成一个东西,其实还有些差别的,显卡不仅包括GPU,还有一些显存、VRM稳压模块、MRAM芯片、总线、风扇、外围设备接口等等。
这个其实不好说,好点的GPU内部的晶体管数量可以超过CPU,CPU的强项是做逻辑运算,GPU的强项是做数学运算和图形渲染。这就ChatGPT用大量高性能显卡做AI推理的原因。
接下来,我们做个简单的对比。
CPU和GPU都是运算的处理器,在架构组成上都包括3个部分:运算单元ALU、控制单元Control和缓存单元Cache。
但是,三者的组成比例却相差很大。
在CPU中缓存单元大概占50%,控制单元25%,运算单元25%;
在GPU中缓存单元大概占5%,控制单元5%,运算单元90%。
结构组成上的巨大差异说明:CPU的运算能力更加均衡,但是不适合做大量的运算;GPU更适合做大量运算。
这倒不是说GPU更牛X,实际上GPU更像是一大群工厂流水线上的工人,适合做大量的简单运算,很复杂的搞不了。但是简单的事情做得非常快,比CPU要快得多。
相比GPU,CPU更像是技术专家,可以做复杂的运算,比如逻辑运算、响应用户请求、网络通信等。但是因为ALU占比较少、内核少,所以适合做相对少量的复杂运算。
在CPU里面,大概50%是缓存单元,并且是四级缓存结构;而在GPU中,缓存是一级或者二级的。
CPU性能更加注重线程的性能,在控制部分做的事情较多,这样做就是为了确保控制指令不能中断,在浮点计算上功耗少。
相较于CPU,GPU的结构更为简单,基本上它也只做单精度或双精度浮点运算。GPU的运算速度更快,吞吐量也更高。
CPU基本上是实时响应,采用多级缓存来保障多个任务的响应速度。
GPU往往采用的是批处理的机制,即:任务先排好队,挨个处理。
我们假设在实时渲染中,一帧1080*720P的图片,那么这张图就有大概777600个像素点。如果按照最基本的24帧/秒的帧率计算。1秒钟就要求计算机处理18662400个,即:1866.24万个像素点。
这还是高清的情况下,如果是1090*1080、2K、4K甚至8K的视频渲染,可想而知,这个计算量是何其巨大。尤其是在像游戏这样的实时渲染场景下,显然仅仅依靠CPU渲染是会超时的。
实际上,在屏幕中显示的三维物体都要经过多重的坐标变换,并且物体的表面会受到环境中各种光线的影响,呈现不同的颜色和阴影。这就包括了光线的漫射、折射、透射、散射等。
接下来,我们以英伟达NVIDIA RTX3090 为例,看下GPU是如何进行渲染的。
RTX3090的流式多处理器有10496个,每个内核都有具备整数运算和浮点运算的部分,还有用于在操作数中排队和收集结果的部分。
所谓流式多处理器可以认为是一个独立的任务处理单元,也可以认为一颗GPU包含了10496个CPU同时处理各个图片处理任务。
我们就可以通过算法和程序,对1秒钟18662400个像素点的整体任务进行切割分片,让10496颗处理器并行计算。
这样的话,每个处理器负责大概每秒处理18662400/10496,即1778个像素点的渲染任务就行了。
如下图所示,在GPU中会划分为多个流式处理区,每个处理区包含数百个内核,每个内核相当于一颗简化版的CPU,具备整数运算和浮点运算的功能,以及排队和结果收集功能。
注意,除了流处理器CUDA以外,影响GPU性能的还有
核心频率:频率越高,性能越强、功耗也越高。
显示位宽:单位是bit,位宽决定了显卡同时可以处理的数据量,越大越好。
显存容量:显存容量越大,代表能缓存的数据就越多。
显存频率:单位是MHz或bps,显存频率越高,图形数据传输速度就越快。
一言以蔽之,GPU不管是处理图形渲染、数值分析,还是处理AI推理。底层逻辑都是将极为繁重的数学进行任务拆解,化繁为简。
然后,利用GPU多流处理器的机制,将大量的运算拆解为一个个小的、简单的运算,并行处理。我们也可以认为一个GPU就是一个集群,里面每个流处理器都是一颗CPU,这样就容易理解了。
以上是关于GPU概念、工作原理的简要介绍。说是简单,其实在图形处理方面,还有很多深层次的处理逻辑没有展开,比如像素位置变换、三角原理等等。感兴趣的小伙伴可以深入研究下。
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
保证100%免费
】123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。