当前位置:   article > 正文

昇思25天学习打卡营第二天|张量 Tensor

昇思25天学习打卡营第二天|张量 Tensor

昇思训练营第二天了,今天学习的内容是张量。记录一下学习内容,好在后面复习参考。

学习内容

今天的学习内容是张量。如果线性代数学的好的同学应该知道矩阵和向量,张量跟矩阵和向量差不多,是人工智能里最重要的基础概念。
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在  n n n 维空间内,有  n r n^{r} nr 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。 r r r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。

张量是一种特殊的数据结构,与数组和矩阵非常相似。张量(Tensor)是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。

创建张量

张量的创建方式有多种,构造张量时,支持传入Tensorfloatintbooltuplelistnumpy.ndarray类型。

  • 根据数据直接生成

    可以根据数据创建张量,数据类型可以设置或者通过框架自动推断。

  • 从NumPy数组生成

    可以从NumPy数组创建张量。

  • 使用init初始化器构造张量

    当使用init初始化器对张量进行初始化时,支持传入的参数有initshapedtype

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

  • 形状(shape):Tensor的shape,是一个tuple。

  • 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。

  • 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。

  • 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。

  • 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。

  • 元素个数(size): Tensor中所有元素的个数,是一个整数。

  • 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。

张量索引

Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:...用于对数据进行切片。

张量运算

张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。

普通算术运算有:加(+)、减(-)、乘(*)、除(/)、取模(%)、整除(//)。

Tensor与NumPy转换

Tensor可以和NumPy进行互相转换。

Tensor转换为NumPy

与张量创建相同,使用 Tensor.asnumpy() 将Tensor变量转换为NumPy变量。

NumPy转换为Tensor

使用Tensor()将NumPy变量转换为Tensor变量。

稀疏张量

稀疏张量是一种特殊张量,其中绝大部分元素的值为零。

在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。这时就可以使用稀疏张量来表征这些数据。

MindSpore现在已经支持最常用的CSRCOO两种稀疏数据格式。

常用稀疏张量的表达形式是<indices:Tensor, values:Tensor, shape:Tensor>。其中,indices表示非零下标元素, values表示非零元素的值,shape表示的是被压缩的稀疏张量的形状。在这个结构下,我们定义了三种稀疏张量结构:CSRTensorCOOTensorRowTensor

CSRTensor

CSR(Compressed Sparse Row)稀疏张量格式有着高效的存储与计算的优势。其中,非零元素的值存储在values中,非零元素的位置存储在indptr(行)和indices(列)中。各参数含义如下:

  • indptr: 一维整数张量, 表示稀疏数据每一行的非零元素在values中的起始位置和终止位置, 索引数据类型支持int16、int32、int64。

  • indices: 一维整数张量,表示稀疏张量非零元素在列中的位置, 与values长度相等,索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示CSRTensor相对应的非零元素的值,与indices长度相等。

  • shape: 表示被压缩的稀疏张量的形状,数据类型为Tuple,目前仅支持二维CSRTensor

CSRTensor的详细文档,请参考mindspore.CSRTensor

COOTensor

COO(Coordinate Format)稀疏张量格式用来表示某一张量在给定索引上非零元素的集合,若非零元素的个数为N,被压缩的张量的维数为ndims。各参数含义如下:

  • indices: 二维整数张量,每行代表非零元素下标。形状:[N, ndims], 索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示相对应的非零元素的值。形状:[N]

  • shape: 表示被压缩的稀疏张量的形状,目前仅支持二维COOTensor

COOTensor的详细文档,请参考mindspore.COOTensor

在这里插入图片描述

总结

很好的训练营,有算力配置,还有小伙伴同学互相激励,欢迎大家报名啊

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/778426
推荐阅读
相关标签
  

闽ICP备14008679号