当前位置:   article > 正文

CNN学习(4):前馈神经网络FNN、多层感知机MLP和反向传播推导_fnn神经网络

fnn神经网络

目录

一、前馈神经网络FNN

激活函数的使用

二、多层感知机MLP

MLP的典型结构

多层感知机MLP的特点

和前馈神经网络FNN的区别

三、传播推导

1、前向传播(Forward propagation)

(1)输入层到隐藏层

(2)隐藏层到输出层

2、反向传播(Backward propagation)

(1)正向传播(Forward Pass)

(2)反向传播(Backward Pass)

① 链式求导法则

② 梯度计算

反向传播算法的作用

具体的推导步骤

总结

三、常见问题

1、如何理解“梯度指向了损失函数增加最快的方向”

2、为何说“最佳参数解的最简单方式就是微分方程等于0找解”

3、学习率跟谁有关?


一、前馈神经网络FNN

给定一组神经元,我们可以将神经元作为节点来构建一个网络。不同的神 经网络模型有着不同网络连接的拓扑结构。一种比较直接的拓扑结构是前馈网络。

前馈神经网络(Feedforward Neural Network,FNN)是最早发明的简单人工神经网络。前馈神经网络也经常称为多层感知器(Multi-Layer Perceptron,MLP)。但多层感知器的叫法并不是十分合理,因为前馈神经网络其实是由多层的 Logistic 回归模型(连续的非线性函数)组成,而不是由多层的感知器(不连续的非线性函数)组成。

在前馈神经网络中,各神经元分别属于不同的层。每一层的神经元可以接收前一层神经元的信号,并产生信号输出到下一层。第0层称为输入层,最后一层称为输出层,其他中间层称为隐藏层。整个网络中无反馈,信号从输入层向输出层单向传播,可用一个有向无环图表示。

多层前馈神经网络

激活函数的使用

FNN中处理二维矩阵输入时,激活函数通常作用于每个元素上。也就是说,对于二维矩阵中的每个元素,都会独立地应用激活函数f。这个过程通常发生在网络的隐藏层,其中每个神经元接收来自前一层的加权输入,然后通过激活函数转换成一个新的矩阵,用作下一层的输入。

在实际的神经网络中,隐藏层的每个神经元通常会接收来自前一层所有神经元的加权和,然后通过激活函数。这意味着,虽然激活函数是逐元素应用的,但在计算每个隐藏层神经元的输出时,会先进行一个线性变换(即

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/正经夜光杯/article/detail/869166
推荐阅读
相关标签