赞
踩
开发者可以调用本模块的Native API接口,完成音频解码,即将媒体数据解码为PCM码流。
当前支持的解码能力如下:
容器规格 | 音频解码类型 |
---|---|
mp4 | AAC、MPEG(MP3)、Flac、Vorbis、AudioViVid11+ |
m4a | AAC |
flac | Flac |
ogg | Vorbis、opus |
aac | AAC |
mp3 | MPEG(MP3) |
amr | AMR(amrnb、amrwb) |
raw | G711mu |
ape | APE |
适用场景
音频播放
在播放音频之前,需要先解码音频,再将数据输送到硬件扬声器播放。
音频渲染
在对音频文件进行音效处理之前,需要先解码再由音频处理模块进行音频渲染。
音频编辑
音频编辑(如调整单个声道的播放倍速等)需要基于PCM码流进行,所以需要先将音频文件解码。
参考以下示例代码,完成音频解码的全流程,包括:创建解码器、设置解码参数(采样率/码率/声道数等)、开始、刷新、重置、销毁资源。
在应用开发过程中,开发者应按一定顺序调用方法,执行对应操作,否则系统可能会抛出异常或生成其他未定义的行为。具体顺序可参考下列开发步骤及对应说明。
如下为音频解码调用关系图:
target_link_libraries(sample PUBLIC libnative_media_codecbase.so)
target_link_libraries(sample PUBLIC libnative_media_core.so)
target_link_libraries(sample PUBLIC libnative_media_acodec.so)
#include <multimedia/player_framework/native_avcodec_audiocodec.h>
#include <multimedia/native_audio_channel_layout.h>
#include <multimedia/player_framework/native_avcapability.h>
#include <multimedia/player_framework/native_avcodec_base.h>
#include <multimedia/player_framework/native_avformat.h>
#include <multimedia/player_framework/native_avbuffer.h>
//c++标准库命名空间
using namespace std;
// 通过 codecname 创建解码器
OH_AVCapability *capability = OH_AVCodec_GetCapability(OH_AVCODEC_MIMETYPE_AUDIO_MPEG, false);
const char *name = OH_AVCapability_GetName(capability);
OH_AVCodec *audioDec_ = OH_AudioCodec_CreateByName(name);
// 设置判定是否为编码;设置false表示当前是解码。
bool isEncoder = false;
// 通过 Mimetype 创建解码器
OH_AVCodec *audioDec_ = OH_AudioCodec_CreateByMime(OH_AVCODEC_MIMETYPE_AUDIO_MPEG, isEncoder);
// 初始化队列
class ADecBufferSignal {
public:
std::mutex inMutex_;
std::mutex outMutex_;
std::mutex startMutex_;
std::condition_variable inCond_;
std::condition_variable outCond_;
std::condition_variable startCond_;
std::queue<uint32_t> inQueue_;
std::queue<uint32_t> outQueue_;
std::queue<OH_AVBuffer *> inBufferQueue_;
std::queue<OH_AVBuffer *> outBufferQueue_;
};
ADecBufferSignal *signal_;
调用OH_AudioCodec_RegisterCallback()注册回调函数。
注册回调函数指针集合OH_AVCodecCallback,包括:
开发者可以通过处理该回调报告的信息,确保解码器正常运转。
// OH_AVCodecOnError回调函数的实现 static void OnError(OH_AVCodec *codec, int32_t errorCode, void *userData) { (void)codec; (void)errorCode; (void)userData; } // OH_AVCodecOnStreamChanged回调函数的实现 static void OnOutputFormatChanged(OH_AVCodec *codec, OH_AVFormat *format, void *userData) { (void)codec; (void)format; (void)userData; } // OH_AVCodecOnNeedInputBuffer回调函数的实现 static void OnInputBufferAvailable(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *data, void *userData) { (void)codec; ADecBufferSignal *signal = static_cast<ADecBufferSignal *>(userData); unique_lock<mutex> lock(signal->inMutex_); signal->inQueue_.push(index); signal->inBufferQueue_.push(data); signal->inCond_.notify_all(); // 解码输入码流送入inBufferQueue_队列 } // OH_AVCodecOnNewOutputBuffer回调函数的实现 static void OnOutputBufferAvailable(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *data, void *userData) { (void)codec; ADecBufferSignal *signal = static_cast<ADecBufferSignal *>(userData); unique_lock<mutex> lock(signal->outMutex_); signal->outQueue_.push(index); signal->outBufferQueue_.push(data); signal->outCond_.notify_all(); // 将对应输出buffer的 index 送入outQueue_队列 // 将对应解码完成的数据data送入outBufferQueue_队列 } signal_ = new ADecBufferSignal(); OH_AVCodecCallback cb_ = {&OnError, &OnOutputFormatChanged, &OnInputBufferAvailable, &OnOutputBufferAvailable}; int32_t ret = OH_AudioCodec_RegisterCallback(audioDec_, cb_, signal_); if (ret != AVCS_ERR_OK) { // 异常处理 }
添加头文件
#include <multimedia/drm_framework/native_mediakeysystem.h>
#include <multimedia/drm_framework/native_mediakeysession.h>
#include <multimedia/drm_framework/native_drm_err.h>
#include <multimedia/drm_framework/native_drm_common.h>
在 CMake 脚本中链接动态库
target_link_libraries(sample PUBLIC libnative_drm.so)
使用示例
// 根据DRM信息创建指定的DRM系统, 以创建"com.wiseplay.drm"为例 MediaKeySystem *system = nullptr; int32_t ret = OH_MediaKeySystem_Create("com.wiseplay.drm", &system); if (system == nullptr) { printf("create media key system failed"); return; } // 进行DRM授权 // 创建解密会话 MediaKeySession *session = nullptr; DRM_ContentProtectionLevel contentProtectionLevel = CONTENT_PROTECTION_LEVEL_SW_CRYPTO; ret = OH_MediaKeySystem_CreateMediaKeySession(system, &contentProtectionLevel, &session); if (session == nullptr) { printf("create media key session failed"); return; } // 获取许可证请求、设置许可证响应等 // 设置解密配置, 即将解密会话、安全通路标志(当前音频解密不支持安全通路,应设置为false)设置到解码器中。 bool secureAudio = false; ret = OH_AudioCodec_SetDecryptionConfig(audioDec_, session, secureAudio);
调用OH_AudioCodec_Configure()配置解码器。
配置选项key值说明:
描述 | AAC | Flac | Vorbis | MPEG | G711mu | AMR(amrnb、amrwb) | APE | |
---|---|---|---|---|---|---|---|---|
OH_MD_KEY_AUD_SAMPLE_RATE | 采样率 | 必须 | 必须 | 必须 | 必须 | 必须 | 必须 | 必须 |
OH_MD_KEY_AUD_CHANNEL_COUNT | 声道数 | 必须 | 必须 | 必须 | 必须 | 必须 | 必须 | 必须 |
OH_MD_KEY_MAX_INPUT_SIZE | 最大输入长度 | 可选 | 可选 | 可选 | 可选 | 可选 | 可选 | 可选 |
OH_MD_KEY_AAC_IS_ADTS | 是否adts | 可选,默认1 latm类型 | - | - | - | - | - | - |
MD_KEY_AUDIO_SAMPLE_FORMAT | 输出音频流格式 | 可选(SAMPLE_S16LE,SAMPLE_F32LE) | - | 可选(SAMPLE_S16LE,SAMPLE_F32LE) | 可选 | 可选(默认SAMPLE_S16LE) | 可选(SAMPLE_S16LE,SAMPLE_F32LE) | 可选 |
MD_KEY_BITRATE | 可选 | 可选 | 可选 | 可选 | 可选 | 可选 | 可选 | 可选 |
MD_KEY_IDENTIFICATION_HEADER | ID Header | - | - | 必须(和Codec_Config二选一) | - | - | - | - |
MD_KEY_SETUP_HEADER | Setup Header | - | - | 必须(和Codec_Config二选一) | - | - | - | - |
MD_KEY_CODEC_CONFIG | MD_KEY_SETUP_HEADERID Header+Common Header+Setup Header 拼接 | - | 必须(和上述ID和Setup二选一) | - | - | - | - |
// 设置解码分辨率 int32_t ret; // 配置音频采样率(必须) constexpr uint32_t DEFAULT_SAMPLERATE = 44100; // 配置音频码率(必须) constexpr uint32_t DEFAULT_BITRATE = 32000; // 配置音频声道数(必须) constexpr uint32_t DEFAULT_CHANNEL_COUNT = 2; // 配置最大输入长度(可选) constexpr uint32_t DEFAULT_MAX_INPUT_SIZE = 1152; // 配置是否为ADTS解码(acc) constexpr uint32_t DEFAULT_AAC_TYPE = 1; OH_AVFormat *format = OH_AVFormat_Create(); // 写入format OH_AVFormat_SetIntValue(format, OH_MD_KEY_AUD_SAMPLE_RATE, DEFAULT_SAMPLERATE); OH_AVFormat_SetIntValue(format, OH_MD_KEY_BITRATE, DEFAULT_BITRATE); OH_AVFormat_SetIntValue(format, OH_MD_KEY_AUD_CHANNEL_COUNT, DEFAULT_CHANNEL_COUNT); OH_AVFormat_SetIntValue(format, OH_MD_KEY_MAX_INPUT_SIZE, DEFAULT_MAX_INPUT_SIZE); OH_AVFormat_SetIntValue(format, OH_MD_KEY_AAC_IS_ADTS, DEFAULT_AAC_TYPE); // 配置解码器 ret = OH_AudioCodec_Configure(audioDec_, format); if (ret != AV_ERR_OK) { // 异常处理 }
ret = OH_AudioCodec_Prepare(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
unique_ptr<ifstream> inputFile_ = make_unique<ifstream>();
unique_ptr<ofstream> outFile_ = make_unique<ofstream>();
// 打开待解码二进制文件路径
inputFile_->open(inputFilePath.data(), ios::in | ios::binary);
// 配置解码文件输出路径
outFile_->open(outputFilePath.data(), ios::out | ios::binary);
// 开始解码
ret = OH_AudioCodec_Start(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
(可选)调用OH_AVCencInfo_SetAVBuffer(),设置cencInfo。
若当前播放的节目是DRM加密节目,且由上层应用做媒体解封装,则须调用OH_AVCencInfo_SetAVBuffer()将cencInfo设置给AVBuffer,以实现AVBuffer中媒体数据的解密。
添加头文件
#include <multimedia/player_framework/native_cencinfo.h>
在 CMake 脚本中链接动态库
target_link_libraries(sample PUBLIC libnative_media_avcencinfo.so)
使用示例
auto buffer = signal_->inBufferQueue_.front(); int64_t size; int64_t pts; uint32_t keyIdLen = DRM_KEY_ID_SIZE; uint8_t keyId[] = { 0xd4, 0xb2, 0x01, 0xe4, 0x61, 0xc8, 0x98, 0x96, 0xcf, 0x05, 0x22, 0x39, 0x8d, 0x09, 0xe6, 0x28}; uint32_t ivLen = DRM_KEY_IV_SIZE; uint8_t iv[] = { 0xbf, 0x77, 0xed, 0x51, 0x81, 0xde, 0x36, 0x3e, 0x52, 0xf7, 0x20, 0x4f, 0x72, 0x14, 0xa3, 0x95}; uint32_t encryptedBlockCount = 0; uint32_t skippedBlockCount = 0; uint32_t firstEncryptedOffset = 0; uint32_t subsampleCount = 1; DrmSubsample subsamples[1] = { {0x10, 0x16} }; inputFile_.read(reinterpret_cast<char *>(&size), sizeof(size)); inputFile_.read(reinterpret_cast<char *>(&pts), sizeof(pts)); inputFile_.read((char *)OH_AVMemory_GetAddr(buffer), size); OH_AVCencInfo *cencInfo = OH_AVCencInfo_Create(); if (cencInfo == nullptr) { // 异常处理 } OH_AVErrCode errNo = OH_AVCencInfo_SetAlgorithm(cencInfo, DRM_ALG_CENC_AES_CTR); if (errNo != AV_ERR_OK) { // 异常处理 } errNo = OH_AVCencInfo_SetKeyIdAndIv(cencInfo, keyId, keyIdLen, iv, ivLen); if (errNo != AV_ERR_OK) { // 异常处理 } errNo = OH_AVCencInfo_SetSubsampleInfo(cencInfo, encryptedBlockCount, skippedBlockCount, firstEncryptedOffset, subsampleCount, subsamples); if (errNo != AV_ERR_OK) { // 异常处理 } errNo = OH_AVCencInfo_SetMode(cencInfo, DRM_CENC_INFO_KEY_IV_SUBSAMPLES_SET); if (errNo != AV_ERR_OK) { // 异常处理 } errNo = OH_AVCencInfo_SetAVBuffer(cencInfo, buffer); if (errNo != AV_ERR_OK) { // 异常处理 } errNo = OH_AVCencInfo_Destroy(cencInfo); if (errNo != AV_ERR_OK) { // 异常处理 }
如果是结束,需要对flag标识成AVCODEC_BUFFER_FLAGS_EOS。
uint32_t index = signal_->inQueue_.front(); auto buffer = signal_->inBufferQueue_.front(); int64_t size; int64_t pts; // size是待解码数据的每帧帧长度。pts是每帧的时间戳,用于指示音频应该何时被播放。 // size和pts的获取来源:音视频资源文件或者待解码的数据流 // 若是解码音视频资源文件,则需从解封装OH_AVDemuxer_ReadSampleBuffer的buffer中获取 // 若是解码数据流,则需要从数据流的提供者获取。 // 此处为了介绍解码功能以测试文件中保存的size和pts为示例 inputFile_.read(reinterpret_cast<char *>(&size), sizeof(size)); inputFile_.read(reinterpret_cast<char *>(&pts), sizeof(pts)); inputFile_.read((char *)OH_AVBuffer_GetAddr(buffer), size); OH_AVCodecBufferAttr attr = {0}; if (inputFile_->eof()) { attr.size = 0; attr.flags = AVCODEC_BUFFER_FLAGS_EOS; } else { attr.size = size; attr.flags = AVCODEC_BUFFER_FLAGS_NONE; } attr.pts = pts; OH_AVBuffer_SetBufferAttr(buffer, &attr); int32_t ret = OH_AudioCodec_PushInputBuffer(audioDec_, index); if (ret != AV_ERR_OK) { // 异常处理 }
从API version 11开始,Audio Vivid新增获取获取元数据。
uint32_t index = signal_->outQueue_.front(); OH_AVBuffer *data = signal_->outBufferQueue_.front(); // 获取buffer attributes OH_AVCodecBufferAttr attr = {0}; ret = OH_AVBuffer_GetBufferAttr(data, &attr); if (ret != AV_ERR_OK) { // 异常处理 } // 将解码完成数据data写入到对应输出文件中 pcmOutputFile_.write(reinterpret_cast<char *>(OH_AVBuffer_GetAddr(data)), attr.size); // API version 11开始提供 获取audio vivid 元数据 OH_AVFormat * format = OH_AVBuffer_GetParameter(data); uint8_t *metadata = nullptr; size_t metaSize; OH_AVFormat_GetBuffer(format,OH_MD_KEY_AUDIO_VIVID_METADATA,&metadata,&metaSize); ret = OH_AudioCodec_FreeOutputBuffer(audioDec_, index); if (ret != AV_ERR_OK) { // 异常处理 } if (attr.flags == AVCODEC_BUFFER_FLAGS_EOS) { // 结束 }
(可选)调用OH_AudioCodec_Flush()刷新解码器。
调用OH_AudioCodec_Flush()后,解码器仍处于运行态,但会将当前队列清空,将已解码的数据释放。
此时需要调用OH_AudioCodec_Start()重新开始解码。
使用情况:
// 刷新解码器 audioDec_
ret = OH_AudioCodec_Flush(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
// 重新开始解码
ret = OH_AudioCodec_Start(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
(可选)调用OH_AudioCodec_Reset()重置解码器。
调用OH_AudioCodec_Reset()后,解码器回到初始化的状态,需要调用OH_AudioCodec_Configure()重新配置,然后调用OH_AudioCodec_Start()重新开始解码。
// 重置解码器 audioDec_
ret = OH_AudioCodec_Reset(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
// 重新配置解码器参数
ret = OH_AudioCodec_Configure(audioDec_, format);
if (ret != AV_ERR_OK) {
// 异常处理
}
// 终止解码器 audioDec_
ret = OH_AudioCodec_Stop(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
}
调用OH_AudioCodec_Destroy()销毁解码器实例,释放资源。
说明
不要重复销毁解码器
// 调用OH_AudioCodec_Destroy, 注销解码器
ret = OH_AudioCodec_Destroy(audioDec_);
if (ret != AV_ERR_OK) {
// 异常处理
} else {
audioDec_ = NULL; // 不可重复destroy
}
很多开发朋友不知道需要学习那些鸿蒙技术?鸿蒙开发岗位需要掌握那些核心技术点?为此鸿蒙的开发学习必须要系统性的进行。
而网上有关鸿蒙的开发资料非常的少,假如你想学好鸿蒙的应用开发与系统底层开发。你可以参考这份资料,少走很多弯路,节省没必要的麻烦。由两位前阿里高级研发工程师联合打造的《鸿蒙NEXT星河版OpenHarmony开发文档》里面内容包含了(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(Harmony NEXT)技术知识点
如果你是一名Android、Java、前端等等开发人员,想要转入鸿蒙方向发展。可以直接领取这份资料辅助你的学习。下面是鸿蒙开发的学习路线图。
针对鸿蒙成长路线打造的鸿蒙学习文档。话不多说,我们直接看详细鸿蒙(OpenHarmony )手册(共计1236页)与鸿蒙(OpenHarmony )开发入门视频,帮助大家在技术的道路上更进一步。
鸿蒙—作为国家主力推送的国产操作系统。部分的高校已经取消了安卓课程,从而开设鸿蒙课程;企业纷纷跟进启动了鸿蒙研发。
并且鸿蒙是完全具备无与伦比的机遇和潜力的;预计到年底将有 5,000 款的应用完成原生鸿蒙开发,未来将会支持 50 万款的应用。那么这么多的应用需要开发,也就意味着需要有更多的鸿蒙人才。鸿蒙开发工程师也将会迎来爆发式的增长,学习鸿蒙势在必行! 自↓↓↓拿
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。