赞
踩
获取题库不需要订阅专栏,可直接私信我进入CSDN领军人物top1博主的华为OD交流圈观看完整题库、最新面试实况、考试报告等内容以及大佬一对一答疑。
题目描述
"吃货"和"馋嘴"两人到披萨店点了一份铁盘(圆形)披萨,并嘱咐店员将披萨按放射状切成大小相同的偶数个小块。但是粗心的服务员将披萨切成了每块大小都完全不同奇数块,且肉眼能分辨出大小。
由于两人都想吃到最多的披萨,他们商量了一个他们认为公平的分法:从"吃货"开始,轮流取披萨。除了第一块披萨可以任意选取外,其他都必须从缺口开始选。
他俩选披萨的思路不同。"馋嘴"每次都会选最大块的披萨,而且"吃货"知道"馋嘴"的想法。
已知披萨小块的数量以及每块的大小,求"吃货"能分得的最大的披萨大小的总和。
输入描述
第 1 行为一个正整数奇数 N,表示披萨小块数量。
3 ≤ N < 500
接下来的第 2 行到第 N + 1 行(共 N 行),每行为一个正整数,表示第 i 块披萨的大小
1 ≤ i ≤ N
披萨小块从某一块开始,按照一个方向次序顺序编号为 1 ~ N
每块披萨的大小范围为 [1, 2147483647]
输出描述
"吃货"能分得到的最大的披萨大小的总和。
题目解析
这是一个典型的动态规划问题,涉及到贪心策略的选择。题目要求确定在两个人轮流选取披萨块的过程中,“吃货”能获得的最大披萨总和,其中“馋嘴”总是会选择当前
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。