赞
踩
#include <fstream> #include <sstream> #include <iostream> #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> #include<vector> #include<string> using namespace std; using namespace cv; using namespace dnn; vector<string> classes; vector<String> getOutputsNames(Net&net) { static vector<String> names; if (names.empty()) { //Get the indices of the output layers, i.e. the layers with unconnected outputs vector<int> outLayers = net.getUnconnectedOutLayers(); //get the names of all the layers in the network vector<String> layersNames = net.getLayerNames(); // Get the names of the output layers in names names.resize(outLayers.size()); for (size_t i = 0; i < outLayers.size(); ++i) names[i] = layersNames[outLayers[i] - 1]; } return names; } void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) { //Draw a rectangle displaying the bounding box rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 1.5);//矩形框大小及颜色 //Get the label for the class name and its confidence string label = format("%.3f", conf); //预测值保留小数点后两位 if (!classes.empty()) { CV_Assert(classId < (int)classes.size()); label = classes[classId] + ":" + label; } //Display the label at the top of the bounding box int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0, 1, &baseLine); //0表示预测框上面的文本条大小,0表示无 top = max(top, labelSize.height); rectangle(frame, Point(left, top - round(0.5*labelSize.height)), Point(left + round(0.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED); //putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, Scalar(255, 0, 0), 3); //0.4表示预测字体的大小,1表示字体的粗细 putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.4, Scalar(255, 0, 0), 1.4); //0.4表示预测字体的大小,1表示字体的粗细 } void postprocess(Mat& frame, const vector<Mat>& outs, float confThreshold, float nmsThreshold) { vector<int> classIds; vector<float> confidences; vector<Rect> boxes; for (size_t i = 0; i < outs.size(); ++i) { // Scan through all the bounding boxes output from the network and keep only the // ones with high confidence scores. Assign the box's class label as the class // with the highest score for the box. float* data = (float*)outs[i].data; for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) { Mat scores = outs[i].row(j).colRange(5, outs[i].cols); Point classIdPoint; double confidence; // Get the value and location of the maximum score minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); if (confidence > confThreshold) { int centerX = (int)(data[0] * frame.cols); int centerY = (int)(data[1] * frame.rows); int width = (int)(data[2] * frame.cols); int height = (int)(data[3] * frame.rows); int left = centerX - width / 2; int top = centerY - height / 2; classIds.push_back(classIdPoint.x); confidences.push_back((float)confidence); boxes.push_back(Rect(left, top, width, height)); } } } // Perform non maximum suppression to eliminate redundant overlapping boxes with // lower confidences vector<int> indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect box = boxes[idx]; drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } int main() { string names_file = "D:\\PointerImg\\darknet-half-pointer\\data\\voc.names"; String model_def = "D:\\PointerImg\\darknet-half-pointer\\cfg\\yolov3-voc.cfg"; String weights = "D:\\PointerImg\\darknet-half-pointer\\backup\\tiny1\\yolov3-voc_last.weights"; int in_w, in_h; double thresh = 0.5; double nms_thresh = 0.25; in_w = in_h = 416; string path = "D:/PointerImg/darknet-half-pointer/data/meter/reality/"; String dest = "D:/PointerImg/darknet-half-pointer/data/predicts/pre2/"; String savedfilename; int len = path.length(); vector<cv::String> filenames; cv::glob(path, filenames); for (int i = 0; i < filenames.size(); i++) { //read names ifstream ifs(names_file.c_str()); string line; while (getline(ifs, line)) classes.push_back(line); //init model Net net = readNetFromDarknet(model_def, weights); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_CPU); //read image and forward VideoCapture capture(2);// VideoCapture:OENCV中新增的类,捕获视频并显示出来 /*while (1) {*/ Mat frame, blob; capture >> frame; frame = imread(filenames[i]); blobFromImage(frame, blob, 1 / 255.0, Size(in_w, in_h), Scalar(), true, false); vector<Mat> mat_blob; imagesFromBlob(blob, mat_blob); //Sets the input to the network net.setInput(blob); // Runs the forward pass to get output of the output layers vector<Mat> outs; net.forward(outs, getOutputsNames(net)); postprocess(frame, outs, thresh, nms_thresh); vector<double> layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; string label = format("Inference time for a frame : %.2f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); printf("Inference time for a frame : %.2f ms", t); //savedfilename = dest + filenames[i].substr(54); //path的字符串长度 savedfilename = dest + filenames[i].substr(len); cout << savedfilename << endl; imwrite(savedfilename, frame); //imwrite("D:\\PointerImg\\darknet-master-meter_pointer\\data\\predicts\\1.jpg", frame); //imshow("res", frame); //waitKey(0); /*}*/ } return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。