赞
踩
关注【云原生AI百宝箱】公众号,获取更多云原生消息
方法一:使用huggingface 官方提供的 huggingface-cli
命令行工具。
(1) 安装依赖
pip install -U huggingface_hubCopy
(2) 基本命令示例:
export HF_ENDPOINT=https://hf-mirror.comCopy
huggingface-cli download --resume-download --local-dir-use-symlinks False bigscience/bloom-560m --local-dir bloom-560mCopy
(3) 下载需要登录的模型(Gated Model)
请添加--token hf_***
参数,其中hf_***
是access token,请先获取huggingface的Token。示例:
huggingface-cli download --token hf_*** --resume-download --local-dir-use-symlinks False meta-llama/Llama-2-7b-hf --local-dir Llama-2-7b-hfCopy
方法二:使用url直接下载时,将 huggingface.co
直接替换为本站域名hf-mirror.com
。使用浏览器或者 wget -c、curl -L、aria2c 等命令行方式即可。
下载需登录的模型需命令行添加 --header hf_***
参数,token 获取具体参见上文。
方法三:(非侵入式,能解决大部分情况)huggingface 提供的包会获取系统变量,所以可以使用通过设置变量来解决。
HF_ENDPOINT=https://hf-mirror.com python your_script.pyCopy
不过有些数据集有内置的下载脚本,那就需要手动改一下脚本内的地址来实现了
Stackoverflow 上有个AI开发入门的最常见问题 How to download model from huggingface?,回答五花八门,可见下载 huggingface 模型的方法是十分多样的。
其实网络快、稳的话,随便哪种方法都挺好,然而结合国内的网络环境,断点续传、多线程下载等特性还是非常有必要的,否则动辄断掉重来很浪费时间。基于这个考虑,对各类方法做个总结和排序:
方法类别 | 推荐程度 | 优点 | 缺点 | |
---|---|---|---|---|
基于URL | 浏览器网页下载 | ⭐⭐⭐ | 通用性好 | 手动麻烦/无多线程 |
多线程下载器 | ⭐⭐⭐⭐ | 通用性好 | 手动麻烦 | |
CLI工具 | git clone 命令 | ⭐⭐ | 简单 | 无断点续传/冗余文件/无多线程 |
专用CLI工具 | huggingface-cli +hf_transfer | ⭐⭐⭐ | 官方下载工具链,功能最全 | 无进度条/容错性低 |
huggingface-cli | ⭐⭐⭐⭐⭐ | 官方下载工具 | 不支持多线程 | |
Python方法 | snapshot_download | ⭐⭐⭐ | 官方支持,功能全 | 脚本复杂/无多线程 |
from_pretrained | ⭐ | 官方支持,简单 | 不方便存储,功能不全 | |
hf_hub_download | ⭐ | 官方支持 | 不支持全量下载/无多线程 |
另外对于数据集的下载和模型基本相同,同理参考。
以下对上述方法进行介绍,并介绍几个常见问题:
模型项目页的 Files
栏中可以获取文件的下载链接。直接网页复制下载链接,或用其他下载工具下载。
常规工具如浏览器默认采用单线程下载,由于国内网络运营商线路质量、QoS等因素有时候会很慢,多线程加速是一种有效、显著提高下载速度的方法。
经典多线程工具推荐两个:IDM、Aria2。 IDM 适用于 Windows、aria2 适用于 Linux。本文头图就是 IDM 工具。因此获取URL后,可以利用这些多线程工具来下载。以我的一次实测为例,单线程700KB/s,IDM 8线程 6MB/s。千兆宽带下,利用IDM能跑到80MB/s+。
当然,手动获取仓库中所有 URL 并导入到多线程下载工具比较麻烦,因此我写了一个命令行脚本 hfd.sh(Gist链接),结合自动获取 url 以及 aria2
多线程下载,适合于 Linux。具体原理见下一节。
链接:hfd.sh(Gist链接),该工具同样支持设置镜像端点的环境变量:
export HF_ENDPOINT="https://hf-mirror.com"
基本命令:
./hdf.sh bigscience/bloom-560m --tool aria2c -x 4
如果没有安装 aria2,则可以默认用 wget:
./hdf.sh bigscience/bloom-560m
此外官方还提供了 git clone repo_url
的方式下载,这种方法相当简单,然而却是最不推荐直接用的方法,缺点有二:
.git
文件夹大小也会存储一份当前版本模型的拷贝以及元信息,导致整个模型文件夹磁盘占用两倍以上,对于有些存在历史版本的模型,下载时间两倍以上,对于网络不够稳,磁盘不够大的用户,严重不推荐!一种比较好的实践是,设置 GIT_LFS_SKIP_SMUDGE=1
环境变量(这可能也是为什么官方huggingface页面提到这个参数的原因),再 git clone
,这样 Git 会先下载仓库中除了大文件之外的文件。然后我们再用一些支持断点续传的工具来下载大文件,这样既支持了断点续传,.git
目录也不会太大(一般几百KB)。这整个流程,其实就是我上一节提到的 hfd 脚本的实现逻辑,感兴趣的可以参考/使用。
huggingface-cli
和 hf_transfer
是 hugging face 官方提供的专门为下载而设计的工具链。前者是一个命令行工具,后者是下载加速模块。
huggingface-cli
隶属于 huggingface_hub
库,不仅可以下载模型、数据,还可以可以登录huggingface、上传模型、数据等。
安装依赖
pip install -U huggingface_hub
注意:huggingface_hub 依赖于 Python>=3.8,此外需要安装 0.17.0 及以上的版本,推荐0.19.0+。
基本用法
huggingface-cli download --resume-download bigscience/bloom-560m --local-dir bloom-560m
下载数据
huggingface-cli download --resume-download --repo-type dataset lavita/medical-qa-shared-task-v1-toy
huggingface-cli 属于官方工具,其长期支持肯定是最好的。非常推荐。
除了长期支持这个优点,官方工具最大的一个优点,在于可以用模型名直接引用模型。
什么意思呢?我们知道,from_pretrain
函数可以接收一个模型的id,也可以接收模型的存储路径。
假如我们用浏览器下载了一个模型,存储到服务器的 /data/gpt2
下了,调用的时候你得写模型的绝对路径
AutoModelForCausalLM.from_pretrained("/data/gpt2")
然而如果你用的 huggingface-cli download gpt2 --local-dir /data/gpt2
下载,即使你把模型存储到了自己指定的目录,但是你仍然可以简单的用模型的名字来引用他。即:
AutoModelForCausalLM.from_pretrained("gpt2")
原理是因为huggingface工具链会在 .cache/huggingface/
下维护一份模型的符号链接,无论你是否指定了模型的存储路径 ,缓存目录下都会链接过去,这样可以避免自己忘了自己曾经下过某个模型,此外调用的时候就很方便。
所以用了官方工具,既可以方便的用模型名引用模型,又可以自己把模型集中存在一个自定义的路径,方便管理。
当然,该工具目前还是有一些缺点的:
一是其存储逻辑不太直观,其默认会把模型下载到 ~/.cache/huggingface/hub/
中,即使设置了 --local-dir
,也会采用符号链接的形式进行链接,其目的在于防止重复下载。然而我们有时候只想简单的下载到特定目录,其中有一项 --local-dir-use-symlinks
,设置为 False 可以部分解决该问题,虽然仍会临时下载到 ~/.cache/huggingface/hub/
,但下载完成后会移动到 --local-dir
指定的目录。
二是由于上述逻辑的问题,主动Ctrl+C中断后,断点续传有时存在bug,导致同样的文件无法中断恢复,会重头下载。相信官方后续会改进。
三是不支持单文件多线程。目前的行为是多文件并行,一次性会同时下载多个文件。
四是遇到网络中断会报错退出,不会自动重试,需要重新手动执行。
hf_transfer
依附并兼容 huggingface-cli
,是 hugging face 官方专门为提高下载速度基于 Rust 开发的一个模块,开启后在带宽充足的机器上可以跑到 500MB/s。本人实测了三台不同网络环境的机器,确实有黑科技啊,都把带宽跑满了(千兆)。
然而缺点是:
尽管如此,还是推荐给大家,看各自网络情况吧。
项目地址:https://github.com/huggingface/hf_transfer。
开启方法
(1)安装依赖
pip install -U hf-transfer
(2)设置 HF_HUB_ENABLE_HF_TRANSFER
环境变量为 1
Linux
export HF_HUB_ENABLE_HF_TRANSFER=1
Windows Powershell
$env:HF_HUB_ENABLE_HF_TRANSFER = 1
开启后使用方法同 huggingface-cli
:
huggingface-cli download --resume-download bigscience/bloom-560m --local-dir bloom-560m
注意:如果看到进度条,说明 hf_transfer
没开启成功! 例如以下情况:
--resume-download
参数,指的是从上一次下载的地方继续,一般推荐总是加上该参数,断了方便继续。然而如果你一开始没有开启 hf_transfer
,下载中途停掉并设置环境变量开启,此时用 --resume-download
会由于不兼容导致 hf_transfer
开启失败!总之观察是否有进度条就可以知道有没有开启成功,没有进度条就说明开启成功!
huggingface 官方提供了snapshot_download
方法下载完整模型,参数众多、比较完善。相比下文另两个 python 方法,推荐 snapshot_download
方法来下载模型,支持断点续传、指定路径、配置代理、排除特定文件等功能。然而有两个缺点:
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="bigscience/bloom-560m",
local_dir="/data/user/test",
local_dir_use_symlinks=False,
proxies={"https": "http://localhost:7890"}
)
对于需要登录的模型,还需要两行额外代码:
import huggingface_hub
huggingface_hub.login("HF_TOKEN") # token 从 https://huggingface.co/settings/tokens 获取
很难记住这么多代码,经常性要下载模型的,不如用上文介绍的官方的命令行工具 huggingface-cli
了。
不过多介绍了。常规方法。
不过多介绍了。常规方法。
由于模型发布者的版权的要求,部分模型无法公开访问下载,需要在 huggingface 上申请许可通过后,才可以下载。这类模型称之为 Gated Model
。基本步骤是:
此步骤必须在 huggingface 官网注册登录后申请,由于网络安全原因,镜像站一般不支持。
申请后一般等待几分钟到几天不等(一般几分钟就行),会发邮件通知你审批结果。
申请通过后,就可以在模型主页的 Files and versions
中看到模型文件了,浏览器的话直接点击下载即可。但是如果想要用工具例如 huggingface-cli
下载,则需要获取 access token。
*Access Token 获取地址: https://huggingface.co/settings/tokens*
访问 huggingface 设置页面的 token 管理页,选择 New 一个 token,只需要 Read
权限即可,创建后便可以在工具中调用时使用了。
除了登陆后浏览器直接下载,几种工具的使用方法分别介绍如下:
Git
git clone https://hf_username:hf_token@huggingface.co/meta-llama/Llama-2-7b-chat-hf
huggingface-cli: 添加 –token 参数
huggingface-cli download --token hf_*** --resume-download bigscience/bloom-560m --local-dir bloom-560m
curl, wget:在 header 中添加token
curl -L --header "Authorization: Bearer hf_***" -o model-00001-of-00002.safetensors https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/resolve/main/model-00001-of-00002.safetensors
wget --header "Authorization: Bearer hf_***" https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/resolve/main/model-00001-of-00002.safetensors
snapshot_download:调用 login 方法
import huggingface_hub
huggingface_hub.login("hf_***")
适用于 huggingface 官方的工具和库,包括:
huggingface-cli
snapshot_download
from_pretrained
hf_hub_download
timm.create_model
设置方法
Windows Powershell
$env:HF_ENDPOINT = "https://hf-mirror.com"
Linux
export HF_ENDPOINT="https://hf-mirror.com"
Python
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
注意os.environ
得在import huggingface库相关语句之前执行。
以上,我们介绍了浏览器、多线程工具、git clone、huggingface-cli、hf_transfer、python方法、hfd脚本等众多方法,各自有其适用场景,大家根据自己的操作系统的支持情况以及个人习惯来选择。
个人推荐:
huggingface-cli
,对外网连接较好(丢包少)的时候,可尝试 huggingface-cli+hf_transfer
(可选)。aria2
,Windows 推荐 IDM。Git clone
(可以被 huggingface-cli
替代),但如确有需要,小模型、小数据集可以 Git clone,建议文件大不要直接 clone,设置环境变量 GIT_LFS_SKIP_SMUDGE=1
再 clone,大文件单独用别的工具下载。Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。