赞
踩
目录
本文部分图文借鉴自《老饼讲解-机器学习》
逻辑回归模型是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。它与多重线性回归有很多相同之处,模型形式基本相同,都具有w'x+b,其中w和b是待求参数。重线性回归直接将w'x+b作为因变量即y =w'x+b,而逻辑回归则通过sigmiod函数将w'x+b对应一个概率P,
也就是说,线性回归用于数值预测问题,而逻辑回归则用于分类问题,逻辑回归输出的是属于类别的概率。逻辑回归的意义如下图所示,用直线/超平面将不同类别的数据样本进行划分:
逻辑回归可以用于做二分类(即只有两个类别),也可以做多分类(2个以上的类别)。二分类是逻辑回归的基本模型,而多分类则是二分类模型的拓展。
逻辑回归的二分类模型如下:
它的损失函数为最大似然损失函数:
模型中的参数W就是通过求解损失函数,令损失函数取最小值,从而求得W的最优解。模型的求解一般使用梯度下降法。
逻辑回归多分类模型是二分类模型的拓展。主要有softmax回归和OVR两种拓展方法,其中,OVR是基于二分类模型的一种通用拓展方法。两种方法的原理如下:
softmax回归:softmax回归是逻辑回归在多分类问题上的推广,通过修改逻辑回归的损失函数,将逻辑回归变为softmax回归。softmax回归会有相同于类别数的输出,输出的值为对于样本属
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。