赞
踩
自 2023 年 3 月 14 日开源 ChatGLM-6B 以来,GLM 系列模型受到广泛关注和认可。特别是 ChatGLM3-6B开源以后,开发者对智谱AI 第四代模型的开源充满期待。
为了使小模型(10B 以下)具备更加强大的能力,GLM 技术团队进行了大量探索工作。经过近半年的探索,我们推出了第四代 GLM 系列开源模型:GLM-4-9B。
在预训练方面,我们引入了大语言模型进入数据筛选流程,最终获得了 10T 高质量多语言数据,数据量是 ChatGLM3-6B 模型的 3 倍以上。同时,我们采用了 FP8 技术进行高效的预训练,相较于第三代模型,训练效率提高了 3.5 倍。在有限显存的情况下,我们探索了性能的极限,并发现 6B 模型性能有限。因此,在考虑到大多数用户的显存大小后,我们将模型规模提升至 9B,并将预训练计算量增加了 5 倍。
综合以上技术升级和其他经验,GLM-4-9B 模型具备了更强大的推理性能、更长的上下文处理能力、多语言、多模态和 All Tools 等突出能力。GLM-4-9B 系列模型包括:基础版本 GLM-4-9B(8K)、对话版本 GLM-4-9B-Chat(128K)、超长上下文版本 GLM-4-9B-Chat-1M(1M)和多模态版本 GLM-4V-9B-Chat(8K)。
以下是 GLM-4-9B 的能力掠影:
具体性能如下:
基于强大的预训练基座,GLM-4-9B 的模型中英文综合性能相比 ChatGLM3-6B 提升了 40%,尤其是在中文对齐能力 AlignBench,指令遵从 IFeval,工程代码 Natural Code Bench 方面都取得了非常显著的提升。对比训练量更多的 Llama 3 8B 模型也没有逊色,英文方面有小幅领先,中文学科方面更是有着高达 50% 的提升。
GLM-4-9B 模型的上下文从 128K 扩展到了 1M tokens,这意味着模型能同时处理 200 万字的输入,大概相当于 2 本红楼梦或者 125 篇论文的长度。
GLM-4-9B-Chat-1M 模型在 1M 的上下文长度下进行了“大海捞针”实验,展现出了出色的无损处理能力。
以下两个 demo 视频案例展示了 GLM-4-9B 的长文本能力。
在 GLM-4-9B-Chat 版本模型下,我们输入了 5 个 PDF 文件,总长度约为 128K,并给出了以下 prompt:“基于上述材料,写一个详细的调研报告,主题是中国大模型的发展,采用报告的书面格式。”结果显示,模型能够写出比较好的调研报告,且生成速度很快。(视频未加速)
在 GLM-4-9B-Chat-1M 版本模型下,我们输入了《三体》的 3 本全集,约 90 万字,并给出以下 prompt:“请仔细阅读上面的三部小说,如果让你给这个小说写第四部,你会怎么写,请给出大纲。”模型能够比较合理地规划并给出续写的框架。(视频加速 10 倍)
GLM-4-9B 支持包括汉语、英语、俄语、西班牙语、德语、法语、意大利语、葡萄牙语、波兰语、日语、荷兰语、阿拉伯语、土耳其语、捷克语、越南语、波斯语、匈牙利语、希腊语、罗马尼亚语、瑞典语、乌克兰语、芬兰语、韩语、丹麦语、保加利亚语和挪威语在内的 26 种语言。
为了提升性能,我们将 tokenizer 的词表大小从 65k 扩充到了 150k,这一改进使得编码效率提高了 30%。在多语言能力方面,我们在六个不同的多语言理解和生成数据集上进行了测试,结果显示 GLM-4-9B-Chat 显著超越 Llama-3-8B-Instruct。具体评测结果如下:
ChatGLM3-6B 模型的函数调用一直广受各大开发者喜爱。GLM-4-9B 模型的函数调用能力更是迎来了巨大的升级,相比上一代提升了 40%,在 Berkeley Function-Calling Leaderboard 上,GLM-4-9B 模型的 Function Call 能力与 GPT-4 不相上下。
“All Tools”即模型能够理解和使用一系列外部工具(比如代码执行、联网浏览、画图、文件操作、数据库查询、API 调用等)来辅助回答问题或完成任务。
在 1 月 16 日的 Zhipu DevDay 上,GLM-4 模型全线升级了 All Tools 能力,模型可以智能调用网页浏览器、代码解释器、CogView 来完成用户的复杂请求。
我们将这一功能带到了 GLM-4-9B 模型中,我们在开源仓库中提供了一个完整的 All Tools Demo,用户可以在本地拥有一个轻量级的清言平替。
在强化文本能力的同时,我们首次推出了基于GLM基座的开源多模态模型GLM-4V-9B。这一模型采用了与CogVLM2相似的架构设计,能够处理高达1120 x 1120分辨率的输入,并通过降采样技术有效减少了token的开销。为了减小部署与计算开销,GLM-4V-9B没有引入额外的视觉专家模块,采用了直接混合文本和图片数据的方式进行训练,在保持文本性能的同时提升多模态能力。
在性能方面,GLM-4V-9B模型展现了显著的优势。尽管其参数量仅为13B,但它成功地超越了许多参数量更大的开源模型。在众多任务中,GLM-4V-9B的性能与GPT-4V不相上下。
以下两个 demo 展示了 GLM-4-9B 多模态能力。
在第一个示例中,我们要求模型识别一件T恤上的公式印花。模型准确地识别出这是麦克斯韦方程组,并且当我们进一步追问关于麦克斯韦方程组的细节时,模型能够依靠其文本处理能力给出回答。这一过程证明了我们在引入多模态功能的同时,并未牺牲模型的文本处理能力。
在第二个示例中,我们输入了一个网页截图,并要求模型将其翻译成HTML代码。模型能够直接识别截图中的元素,并输出相应的代码,展现了其在多模态任务中的实用性。
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
保证100%免费
】Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。