当前位置:   article > 正文

Android端 可使用Yolov5训练 路标识别_android yolov5

android yolov5

相信大家对于路标识别,红绿灯识别,图形识别opencv中也是一件烦人的事情,其参数是及其受到现实环境因素的影响的,那么今天我就给大家推荐一种方式,缺点是周期长,但其优点是如果训练效果好久对于环境的各种变化的适应性增强了。

目录

一、环境搭建

1.1 Python3.9

1.2 YOLOv5        

1.3 labelimg 

1.4 Cuda

1.4.1 安装Cuda

1.4.2 pytorch下载

1.4.3 运行

1.5可能遇到的问题

二、开始工作

2.1 训练模型

2.1.1 创建训练的数据集(图片+标记好的txt文件)

2.1.2 类别声明 以及 数据集目标指引

2.1.3 超参(根据自身需要注意改的地方即可)

2.2 预测模型

三、我们可以部署在安卓移动端 --tflite


一、环境搭建

1.1 Python3.9

我们需要使用Anaconda3创建一个Python3.9的环境,这是为了后续方便使用labelimg进行数据标记和yolov5中需要的pytorch对应需要的环境   

我的环境变量的导入信息

Py3.9的包

1.2 YOLOv5        

https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/863057

推荐阅读
相关标签
  

闽ICP备14008679号