赞
踩
表:Movies
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| title | varchar |
+---------------+---------+
movie_id 是这个表的主键(具有唯一值的列)。
title 是电影的名字。
表:Users
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| name | varchar |
+---------------+---------+
user_id 是表的主键(具有唯一值的列)。
表:MovieRating
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| user_id | int |
| rating | int |
| created_at | date |
+---------------+---------+
(movie_id, user_id) 是这个表的主键(具有唯一值的列的组合)。
这个表包含用户在其评论中对电影的评分 rating 。
created_at 是用户的点评日期。
请你编写一个解决方案:
February 2020
平均评分最高 的电影名称。如果出现平局,返回字典序较小的电影名称。字典序 ,即按字母在字典中出现顺序对字符串排序,字典序较小则意味着排序靠前。
返回结果格式如下例所示。
示例 1:
输入: Movies 表: +-------------+--------------+ | movie_id | title | +-------------+--------------+ | 1 | Avengers | | 2 | Frozen 2 | | 3 | Joker | +-------------+--------------+ Users 表: +-------------+--------------+ | user_id | name | +-------------+--------------+ | 1 | Daniel | | 2 | Monica | | 3 | Maria | | 4 | James | +-------------+--------------+ MovieRating 表: +-------------+--------------+--------------+-------------+ | movie_id | user_id | rating | created_at | +-------------+--------------+--------------+-------------+ | 1 | 1 | 3 | 2020-01-12 | | 1 | 2 | 4 | 2020-02-11 | | 1 | 3 | 2 | 2020-02-12 | | 1 | 4 | 1 | 2020-01-01 | | 2 | 1 | 5 | 2020-02-17 | | 2 | 2 | 2 | 2020-02-01 | | 2 | 3 | 2 | 2020-03-01 | | 3 | 1 | 3 | 2020-02-22 | | 3 | 2 | 4 | 2020-02-25 | +-------------+--------------+--------------+-------------+ 输出: Result 表: +--------------+ | results | +--------------+ | Daniel | | Frozen 2 | +--------------+ 解释: Daniel 和 Monica 都点评了 3 部电影("Avengers", "Frozen 2" 和 "Joker") 但是 Daniel 字典序比较小。 Frozen 2 和 Joker 在 2 月的评分都是 3.5,但是 Frozen 2 的字典序比较小。
解答:
# Write your MySQL query statement below ( SELECT u.name AS results FROM MovieRating m LEFT JOIN Users u ON m.user_id = u.user_id GROUP BY u.user_id ORDER BY count(m.movie_id) DESC,name LIMIT 1 ) UNION ALL ( SELECT m1.title AS results FROM MovieRating m LEFT JOIN Movies m1 ON m.movie_id = m1.movie_id WHERE DATE_FORMAT(created_at,"%Y-%m") = "2020-02" GROUP BY m.movie_id ORDER BY AVG(rating) DESC,results LIMIT 1 )
表: Customer
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
| visited_on | date |
| amount | int |
+---------------+---------+
在 SQL 中,(customer_id, visited_on) 是该表的主键。
该表包含一家餐馆的顾客交易数据。
visited_on 表示 (customer_id) 的顾客在 visited_on 那天访问了餐馆。
amount 是一个顾客某一天的消费总额。
你是餐馆的老板,现在你想分析一下可能的营业额变化增长(每天至少有一位顾客)。
计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客消费平均值。average_amount
要 保留两位小数。
结果按 visited_on
升序排序。
返回结果格式的例子如下。
示例 1:
输入: Customer 表: +-------------+--------------+--------------+-------------+ | customer_id | name | visited_on | amount | +-------------+--------------+--------------+-------------+ | 1 | Jhon | 2019-01-01 | 100 | | 2 | Daniel | 2019-01-02 | 110 | | 3 | Jade | 2019-01-03 | 120 | | 4 | Khaled | 2019-01-04 | 130 | | 5 | Winston | 2019-01-05 | 110 | | 6 | Elvis | 2019-01-06 | 140 | | 7 | Anna | 2019-01-07 | 150 | | 8 | Maria | 2019-01-08 | 80 | | 9 | Jaze | 2019-01-09 | 110 | | 1 | Jhon | 2019-01-10 | 130 | | 3 | Jade | 2019-01-10 | 150 | +-------------+--------------+--------------+-------------+ 输出: +--------------+--------------+----------------+ | visited_on | amount | average_amount | +--------------+--------------+----------------+ | 2019-01-07 | 860 | 122.86 | | 2019-01-08 | 840 | 120 | | 2019-01-09 | 840 | 120 | | 2019-01-10 | 1000 | 142.86 | +--------------+--------------+----------------+ 解释: 第一个七天消费平均值从 2019-01-01 到 2019-01-07 是restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86 第二个七天消费平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120 第三个七天消费平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120 第四个七天消费平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
解答:
SELECT c1.visited_on , c1.amount, ROUND(c1.amount/7,2) AS average_amount FROM ( SELECT visited_on, ( SELECT SUM(amount) FROM Customer ct2 WHERE ct2.visited_on BETWEEN ADDDATE(ct1.visited_on,-6) AND ct1.visited_on ) AS amount FROM Customer ct1 GROUP BY visited_on ) AS c1 LEFT JOIN ( SELECT DISTINCT visited_on FROM Customer WHERE visited_on >= ( SELECT ADDDATE(MIN(visited_on),6) FROM Customer ) ) AS c2 ON c1.visited_on = c2.visited_on WHERE c2.visited_on IS NOT NULL
RequestAccepted
表:
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| requester_id | int |
| accepter_id | int |
| accept_date | date |
+----------------+---------+
(requester_id, accepter_id) 是这张表的主键(具有唯一值的列的组合)。
这张表包含发送好友请求的人的 ID ,接收好友请求的人的 ID ,以及好友请求通过的日期。
编写解决方案,找出拥有最多的好友的人和他拥有的好友数目。
生成的测试用例保证拥有最多好友数目的只有 1 个人。
查询结果格式如下例所示。
示例 1:
输入: RequestAccepted 表: +--------------+-------------+-------------+ | requester_id | accepter_id | accept_date | +--------------+-------------+-------------+ | 1 | 2 | 2016/06/03 | | 1 | 3 | 2016/06/08 | | 2 | 3 | 2016/06/08 | | 3 | 4 | 2016/06/09 | +--------------+-------------+-------------+ 输出: +----+-----+ | id | num | +----+-----+ | 3 | 3 | +----+-----+ 解释: 编号为 3 的人是编号为 1 ,2 和 4 的人的好友,所以他总共有 3 个好友,比其他人都多。
**进阶:**在真实世界里,可能会有多个人拥有好友数相同且最多,你能找到所有这些人吗?
SELECT id, SUM(num) AS num FROM ( ( SELECT requester_id AS id, COUNT(1) AS num FROM RequestAccepted GROUP BY requester_id ) UNION ALL ( SELECT accepter_id AS id, COUNT(1) AS num FROM RequestAccepted GROUP BY accepter_id ) ) AS ra GROUP BY id ORDER BY num DESC LIMIT 1
Insurance
表:
+-------------+-------+
| Column Name | Type |
+-------------+-------+
| pid | int |
| tiv_2015 | float |
| tiv_2016 | float |
| lat | float |
| lon | float |
+-------------+-------+
pid 是这张表的主键(具有唯一值的列)。
表中的每一行都包含一条保险信息,其中:
pid 是投保人的投保编号。
tiv_2015 是该投保人在 2015 年的总投保金额,tiv_2016 是该投保人在 2016 年的总投保金额。
lat 是投保人所在城市的纬度。题目数据确保 lat 不为空。
lon 是投保人所在城市的经度。题目数据确保 lon 不为空。
编写解决方案报告 2016 年 (tiv_2016
) 所有满足下述条件的投保人的投保金额之和:
tiv_2015
) 至少跟一个其他投保人在 2015 年的投保额相同。lat, lon
) 不能跟其他任何一个投保人完全相同)。tiv_2016
四舍五入的 两位小数 。
查询结果格式如下例所示。
示例 1:
输入: Insurance 表: +-----+----------+----------+-----+-----+ | pid | tiv_2015 | tiv_2016 | lat | lon | +-----+----------+----------+-----+-----+ | 1 | 10 | 5 | 10 | 10 | | 2 | 20 | 20 | 20 | 20 | | 3 | 10 | 30 | 20 | 20 | | 4 | 10 | 40 | 40 | 40 | +-----+----------+----------+-----+-----+ 输出: +----------+ | tiv_2016 | +----------+ | 45.00 | +----------+ 解释: 表中的第一条记录和最后一条记录都满足两个条件。 tiv_2015 值为 10 与第三条和第四条记录相同,且其位置是唯一的。 第二条记录不符合任何一个条件。其 tiv_2015 与其他投保人不同,并且位置与第三条记录相同,这也导致了第三条记录不符合题目要求。 因此,结果是第一条记录和最后一条记录的 tiv_2016 之和,即 45 。
解答:
SELECT ROUND(SUM(tiv_2016),2) AS tiv_2016 FROM ( SELECT tiv_2016, ( SELECT COUNT(1) FROM Insurance is1 WHERE CONCAT(is1.lat,is1.lon) = CONCAT(i1.lat,i1.lon) AND is1.pid != i1.pid ) AS lat_lon, ( SELECT COUNT(1) FROM Insurance is1 WHERE is1.tiv_2015 = i1.tiv_2015 AND is1.pid != i1.pid ) AS tiv_2015 FROM Insurance i1 ) AS tmp WHERE lat_lon = 0 AND tiv_2015 > 0
SELECT ROUND(SUM(tiv_2016),2) AS tiv_2016 FROM Insurance WHERE tiv_2015 IN( SELECT tiv_2015 FROM Insurance GROUP BY tiv_2015 HAVING COUNT(*)>1 ) AND (lat, lon) IN( SELECT lat, lon FROM Insurance GROUP BY lat, lon HAVING COUNT(*)=1 );
表: Employee
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| id | int |
| name | varchar |
| salary | int |
| departmentId | int |
+--------------+---------+
id 是该表的主键列(具有唯一值的列)。
departmentId 是 Department 表中 ID 的外键(reference 列)。
该表的每一行都表示员工的ID、姓名和工资。它还包含了他们部门的ID。
表: Department
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| name | varchar |
+-------------+---------+
id 是该表的主键列(具有唯一值的列)。
该表的每一行表示部门ID和部门名。
公司的主管们感兴趣的是公司每个部门中谁赚的钱最多。一个部门的 高收入者 是指一个员工的工资在该部门的 不同 工资中 排名前三 。
编写解决方案,找出每个部门中 收入高的员工 。
以 任意顺序 返回结果表。
返回结果格式如下所示。
示例 1:
输入: Employee 表: +----+-------+--------+--------------+ | id | name | salary | departmentId | +----+-------+--------+--------------+ | 1 | Joe | 85000 | 1 | | 2 | Henry | 80000 | 2 | | 3 | Sam | 60000 | 2 | | 4 | Max | 90000 | 1 | | 5 | Janet | 69000 | 1 | | 6 | Randy | 85000 | 1 | | 7 | Will | 70000 | 1 | +----+-------+--------+--------------+ Department 表: +----+-------+ | id | name | +----+-------+ | 1 | IT | | 2 | Sales | +----+-------+ 输出: +------------+----------+--------+ | Department | Employee | Salary | +------------+----------+--------+ | IT | Max | 90000 | | IT | Joe | 85000 | | IT | Randy | 85000 | | IT | Will | 70000 | | Sales | Henry | 80000 | | Sales | Sam | 60000 | +------------+----------+--------+ 解释: 在IT部门: - Max的工资最高 - 兰迪和乔都赚取第二高的独特的薪水 - 威尔的薪水是第三高的 在销售部: - 亨利的工资最高 - 山姆的薪水第二高 - 没有第三高的工资,因为只有两名员工
解答:
SELECT d.name AS Department, e.name AS Employee, e.salary AS Salary FROM Department d LEFT JOIN Employee e ON e.departmentId = d.id WHERE e.salary IN ( # 嵌套一层查询,IN不能直接与LIMIT使用 SELECT * FROM ( # 先查询对应部门前三的薪资 SELECT salary FROM Employee emp1 WHERE emp1.departmentId = e.departmentId GROUP BY emp1.salary ORDER BY emp1.salary DESC LIMIT 3 ) AS tmp )
表: Users
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| user_id | int |
| name | varchar |
+----------------+---------+
user_id 是该表的主键(具有唯一值的列)。
该表包含用户的 ID 和名字。名字仅由小写和大写字符组成。
编写解决方案,修复名字,使得只有第一个字符是大写的,其余都是小写的。
返回按 user_id
排序的结果表。
返回结果格式示例如下。
示例 1:
输入:
Users table:
+---------+-------+
| user_id | name |
+---------+-------+
| 1 | aLice |
| 2 | bOB |
+---------+-------+
输出:
+---------+-------+
| user_id | name |
+---------+-------+
| 1 | Alice |
| 2 | Bob |
+---------+-------+
解答:
SELECT user_id, # CONCAT(s1,s2...sn) 字符串 s1,s2 等多个字符串合并为一个字符串 CONCAT( # UPPER(s) 将字符串转换为大写 # LEFT(s,n) 返回字符串 s 的前 n 个字符 UPPER(LEFT(name,1)), # LOWER(s) 将字符串 s 的所有字母变成小写字母 # SUBSTR(s, start, length) 从字符串 s 的 start 位置截取长度为 length 的子字符串 # CHAR_LENGTH(s) 返回字符串 s 的字符数 LOWER(SUBSTR(name, 2, CHAR_LENGTH(name))) ) AS name FROM Users ORDER BY user_id
患者信息表: Patients
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| patient_id | int |
| patient_name | varchar |
| conditions | varchar |
+--------------+---------+
在 SQL 中,patient_id (患者 ID)是该表的主键。
'conditions' (疾病)包含 0 个或以上的疾病代码,以空格分隔。
这个表包含医院中患者的信息。
查询患有 I 类糖尿病的患者 ID (patient_id)、患者姓名(patient_name)以及其患有的所有疾病代码(conditions)。I 类糖尿病的代码总是包含前缀 DIAB1
。
按 任意顺序 返回结果表。
查询结果格式如下示例所示。
示例 1:
输入: Patients表: +------------+--------------+--------------+ | patient_id | patient_name | conditions | +------------+--------------+--------------+ | 1 | Daniel | YFEV COUGH | | 2 | Alice | | | 3 | Bob | DIAB100 MYOP | | 4 | George | ACNE DIAB100 | | 5 | Alain | DIAB201 | +------------+--------------+--------------+ 输出: +------------+--------------+--------------+ | patient_id | patient_name | conditions | +------------+--------------+--------------+ | 3 | Bob | DIAB100 MYOP | | 4 | George | ACNE DIAB100 | +------------+--------------+--------------+ 解释:Bob 和 George 都患有代码以 DIAB1 开头的疾病。
解答:
SELECT
*
FROM
Patients
WHERE
conditions LIKE "DIAB1%"
OR
conditions LIKE "% DIAB1%"
表: Person
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| email | varchar |
+-------------+---------+
id 是该表的主键列(具有唯一值的列)。
该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。
编写解决方案 删除 所有重复的电子邮件,只保留一个具有最小 id
的唯一电子邮件。
(对于 SQL 用户,请注意你应该编写一个 DELETE
语句而不是 SELECT
语句。)
(对于 Pandas 用户,请注意你应该直接修改 Person
表。)
运行脚本后,显示的答案是 Person
表。驱动程序将首先编译并运行您的代码片段,然后再显示 Person
表。Person
表的最终顺序 无关紧要 。
返回结果格式如下示例所示。
示例 1:
输入: Person 表: +----+------------------+ | id | email | +----+------------------+ | 1 | john@example.com | | 2 | bob@example.com | | 3 | john@example.com | +----+------------------+ 输出: +----+------------------+ | id | email | +----+------------------+ | 1 | john@example.com | | 2 | bob@example.com | +----+------------------+ 解释: john@example.com重复两次。我们保留最小的Id = 1。
解答:
DELETE
p1
FROM
Person p1
,Person p2
WHERE
p1.id > p2.id
AND
p1.email = p2.email
DELETE FROM
Person
WHERE
ID NOT IN (
SELECT
*
FROM (
SELECT
MIN(id)
FROM Person
GROUP BY email
) AS P1);
Employee
表:
+-------------+------+
| Column Name | Type |
+-------------+------+
| id | int |
| salary | int |
+-------------+------+
在 SQL 中,id 是这个表的主键。
表的每一行包含员工的工资信息。
查询并返回 Employee
表中第二高的薪水 。如果不存在第二高的薪水,查询应该返回 null(Pandas 则返回 None)
。
查询结果如下例所示。
示例 1:
输入:
Employee 表:
+----+--------+
| id | salary |
+----+--------+
| 1 | 100 |
| 2 | 200 |
| 3 | 300 |
+----+--------+
输出:
+---------------------+
| SecondHighestSalary |
+---------------------+
| 200 |
+---------------------+
示例 2:
输入:
Employee 表:
+----+--------+
| id | salary |
+----+--------+
| 1 | 100 |
+----+--------+
输出:
+---------------------+
| SecondHighestSalary |
+---------------------+
| null |
+---------------------+
解答:
SELECT
MAX(salary) AS SecondHighestSalary
FROM
Employee
WHERE
salary <(
SELECT
MAX(salary)
FROM
Employee
)
表 Activities
:
+-------------+---------+
| 列名 | 类型 |
+-------------+---------+
| sell_date | date |
| product | varchar |
+-------------+---------+
该表没有主键(具有唯一值的列)。它可能包含重复项。
此表的每一行都包含产品名称和在市场上销售的日期。
编写解决方案找出每个日期、销售的不同产品的数量及其名称。
每个日期的销售产品名称应按词典序排列。
返回按 sell_date
排序的结果表。
结果表结果格式如下例所示。
示例 1:
输入: Activities 表: +------------+-------------+ | sell_date | product | +------------+-------------+ | 2020-05-30 | Headphone | | 2020-06-01 | Pencil | | 2020-06-02 | Mask | | 2020-05-30 | Basketball | | 2020-06-01 | Bible | | 2020-06-02 | Mask | | 2020-05-30 | T-Shirt | +------------+-------------+ 输出: +------------+----------+------------------------------+ | sell_date | num_sold | products | +------------+----------+------------------------------+ | 2020-05-30 | 3 | Basketball,Headphone,T-shirt | | 2020-06-01 | 2 | Bible,Pencil | | 2020-06-02 | 1 | Mask | +------------+----------+------------------------------+ 解释: 对于2020-05-30,出售的物品是 (Headphone, Basketball, T-shirt),按词典序排列,并用逗号 ',' 分隔。 对于2020-06-01,出售的物品是 (Pencil, Bible),按词典序排列,并用逗号分隔。 对于2020-06-02,出售的物品是 (Mask),只需返回该物品名。
解答:
SELECT
sell_date,
COUNT(DISTINCT product) AS num_sold,
GROUP_CONCAT(DISTINCT product ORDER BY product) AS products
FROM
Activities
GROUP BY
sell_date
ORDER BY
sell_date
表: Products
+------------------+---------+
| Column Name | Type |
+------------------+---------+
| product_id | int |
| product_name | varchar |
| product_category | varchar |
+------------------+---------+
product_id 是该表主键(具有唯一值的列)。
该表包含该公司产品的数据。
表: Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| product_id | int |
| order_date | date |
| unit | int |
+---------------+---------+
该表可能包含重复行。
product_id 是表单 Products 的外键(reference 列)。
unit 是在日期 order_date 内下单产品的数目。
写一个解决方案,要求获取在 2020 年 2 月份下单的数量不少于 100 的产品的名字和数目。
返回结果表单的 顺序无要求 。
查询结果的格式如下。
示例 1:
输入: Products 表: +-------------+-----------------------+------------------+ | product_id | product_name | product_category | +-------------+-----------------------+------------------+ | 1 | Leetcode Solutions | Book | | 2 | Jewels of Stringology | Book | | 3 | HP | Laptop | | 4 | Lenovo | Laptop | | 5 | Leetcode Kit | T-shirt | +-------------+-----------------------+------------------+ Orders 表: +--------------+--------------+----------+ | product_id | order_date | unit | +--------------+--------------+----------+ | 1 | 2020-02-05 | 60 | | 1 | 2020-02-10 | 70 | | 2 | 2020-01-18 | 30 | | 2 | 2020-02-11 | 80 | | 3 | 2020-02-17 | 2 | | 3 | 2020-02-24 | 3 | | 4 | 2020-03-01 | 20 | | 4 | 2020-03-04 | 30 | | 4 | 2020-03-04 | 60 | | 5 | 2020-02-25 | 50 | | 5 | 2020-02-27 | 50 | | 5 | 2020-03-01 | 50 | +--------------+--------------+----------+ 输出: +--------------------+---------+ | product_name | unit | +--------------------+---------+ | Leetcode Solutions | 130 | | Leetcode Kit | 100 | +--------------------+---------+ 解释: 2020 年 2 月份下单 product_id = 1 的产品的数目总和为 (60 + 70) = 130 。 2020 年 2 月份下单 product_id = 2 的产品的数目总和为 80 。 2020 年 2 月份下单 product_id = 3 的产品的数目总和为 (2 + 3) = 5 。 2020 年 2 月份 product_id = 4 的产品并没有下单。 2020 年 2 月份下单 product_id = 5 的产品的数目总和为 (50 + 50) = 100 。
解答:
SELECT
p.product_name,
SUM(o.unit) AS unit
FROM
Orders o
LEFT JOIN
Products p
ON
o.product_id = p.product_id
WHERE
DATE_FORMAT(o.order_date,"%Y-%m") = "2020-02"
GROUP BY
o.product_id
HAVING
SUM(o.unit) >= 100
表: Users
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| name | varchar |
| mail | varchar |
+---------------+---------+
user_id 是该表的主键(具有唯一值的列)。
该表包含了网站已注册用户的信息。有一些电子邮件是无效的。
编写一个解决方案,以查找具有有效电子邮件的用户。
一个有效的电子邮件具有前缀名称和域,其中:
'_'
,点 '.'
和/或破折号 '-'
。前缀名称 必须 以字母开头。'@leetcode.com'
。以任何顺序返回结果表。
结果的格式如以下示例所示:
示例 1:
输入: Users 表: +---------+-----------+-------------------------+ | user_id | name | mail | +---------+-----------+-------------------------+ | 1 | Winston | winston@leetcode.com | | 2 | Jonathan | jonathanisgreat | | 3 | Annabelle | bella-@leetcode.com | | 4 | Sally | sally.come@leetcode.com | | 5 | Marwan | quarz#2020@leetcode.com | | 6 | David | david69@gmail.com | | 7 | Shapiro | .shapo@leetcode.com | +---------+-----------+-------------------------+ 输出: +---------+-----------+-------------------------+ | user_id | name | mail | +---------+-----------+-------------------------+ | 1 | Winston | winston@leetcode.com | | 3 | Annabelle | bella-@leetcode.com | | 4 | Sally | sally.come@leetcode.com | +---------+-----------+-------------------------+ 解释: 用户 2 的电子邮件没有域。 用户 5 的电子邮件带有不允许的 '#' 符号。 用户 6 的电子邮件没有 leetcode 域。 用户 7 的电子邮件以点开头。
解答:
SELECT
user_id,
name,
mail
FROM
Users
WHERE
# 使用 REGEXP 和 RLIKE都可进行正则表达式匹配,以'^'开始,以'$'结束
mail RLIKE "^[A-Za-z][a-zA-Z0-9\\_\\.\\-]*@leetcode\\.com$"
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。